
ECE 757 Review: Parallel Processors

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Erika Gunadi,

Mitch Hayenga, Vignyan Reddy, Dibakar Gope

Parallel Processors

• Thread-level parallelism

• Synchronization

• Coherence

• Consistency

• Multithreading

• Multicore interconnects

Thread-level Parallelism

• Instruction-level parallelism
– Reaps performance by finding independent work in a single

thread

• Thread-level parallelism
– Reaps performance by finding independent work across multiple

threads

• Historically, requires explicitly parallel workloads
– Originate from mainframe time-sharing workloads
– Even then, CPU speed >> I/O speed
– Had to overlap I/O latency with “something else” for the CPU to

do
– Hence, operating system would schedule other

tasks/processes/threads that were “time-sharing” the CPU

Thread-level Parallelism

• Reduces effectiveness of temporal and spatial locality

Thread-level Parallelism
• Initially motivated by time-sharing of single CPU

– OS, applications written to be multithreaded

• Quickly led to adoption of multiple CPUs in a single system
– Enabled scalable product line from entry-level single-CPU systems

to high-end multiple-CPU systems
– Same applications, OS, run seamlessly
– Adding CPUs increases throughput (performance)

• More recently:
– Multiple threads per processor core

• Coarse-grained multithreading (aka “switch-on-event”)
• Fine-grained multithreading
• Simultaneous multithreading

– Multiple processor cores per die
• Chip multiprocessors (CMP)
• Chip multithreading (CMT)

f

Amdahl’s Law

f – fraction that can run in parallel

1-f – fraction that must run serially

6

Time

#
 C

P
U

s

1
1-f

f

n

n

f
f

Speedup





)1(

1

f

n

f
f

n 



 1

1

1

1
lim

Mikko Lipasti-University of Wisconsin

Thread-level Parallelism
• Parallelism limited by sharing

– Amdahl’s law:
• Access to shared state must be serialized
• Serial portion limits parallel speedup

– Many important applications share (lots of) state
• Relational databases (transaction processing): GBs of shared state

– Even completely independent processes “share” virtualized
hardware through O/S, hence must synchronize access

• Access to shared state/shared variables

– Must occur in a predictable, repeatable manner
– Otherwise, chaos results

• Architecture must provide primitives for serializing access

to shared state

Synchronization

Some Synchronization Primitives

• Only one is necessary

– Others can be synthesized

Primitive Semantic Comments

Fetch-and-add Atomic load/add/store

operation

Permits atomic increment, can be

used to synthesize locks for

mutual exclusion

Compare-and-swap Atomic

load/compare/conditional

store

Stores only if load returns an

expected value

Load-linked/store-

conditional

Atomic load/conditional

store

Stores only if load/store pair is

atomic; that is, there is no

intervening store

Synchronization Examples

• All three guarantee same semantic:
– Initial value of A: 0
– Final value of A: 4

• b uses additional lock variable AL to protect critical section with a spin
lock
– This is the most common synchronization method in modern

multithreaded applications

Multicore Designs
• Belong to: shared-memory symmetric multiprocessors

– Many other types of parallel processor systems have been
proposed and built

– Key attributes are:
• Shared memory: all physical memory is accessible to all CPUs

• Symmetric processors: all CPUs are alike

– Other parallel processors may:
• Share some memory, share disks, share nothing

• May have asymmetric processing units or noncoherent caches

• Shared memory in the presence of caches

– Need caches to reduce latency per reference
– Need caches to increase available bandwidth per core
– But, using caches induces the cache coherence problem
– Furthermore, how do we interleave references from cores?

11 Mikko Lipasti-University of Wisconsin

Cache Coherence Problem

12

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

1

Load A

Memory

Mikko Lipasti-University of Wisconsin

Cache Coherence Problem

13

P0 P1
Load A

A 0

Load A

A 0

Store A<= 1

Memory

1

Load A

A 1

Mikko Lipasti-University of Wisconsin

Invalidate Protocol

• Basic idea: maintain single writer property
– Only one processor has write permission at any point in time

• Write handling
– On write, invalidate all other copies of data
– Make data private to the writer
– Allow writes to occur until data is requested
– Supply modified data to requestor directly or through memory

• Minimal set of states per cache line:
– Invalid (not present)
– Modified (private to this cache)

• State transitions:
– Local read or write: I->M, fetch modified
– Remote read or write: M->I, transmit data (directly or through memory)
– Writeback: M->I, write data to memory

14 Mikko Lipasti-University of Wisconsin

Invalidate Protocol
Optimizations

• Observation: data can be read-shared
– Add S (shared) state to protocol: MSI

• State transitions:
– Local read: I->S, fetch shared

– Local write: I->M, fetch modified; S->M, invalidate other copies

– Remote read: M->S, supply data

– Remote write: M->I, supply data; S->I, invalidate local copy

• Observation: data can be write-private (e.g. stack frame)
– Avoid invalidate messages in that case

– Add E (exclusive) state to protocol: MESI

• State transitions:
– Local read: I->E if only copy, I->S if other copies exist

– Local write: E->M silently, S->M, invalidate other copies

15 Mikko Lipasti-University of Wisconsin

Sample Invalidate Protocol (MESI)

16

BR

Mikko Lipasti-University of Wisconsin

Sample Invalidate Protocol (MESI)

17

Current

State s

Event and Local Coherence Controller Responses and Actions (s' refers to next state)

Local Read (LR) Local Write

(LW)

Local

Eviction (EV)

Bus Read

(BR)

Bus Write

(BW)

Bus Upgrade

(BU)

Invalid (I) Issue bus read

if no sharers then

s' = E

else s' = S

Issue bus

write

s' = M

s' = I Do nothing Do nothing Do nothing

Shared (S) Do nothing Issue bus

upgrade

s' = M

s' = I Respond

shared

s' = I s' = I

Exclusive

(E)
Do nothing s' = M s' = I Respond

shared

s' = S

s' = I Error

Modified

(M)
Do nothing Do nothing Write data

back;

s' = I

Respond

dirty;

Write data

back;

s' = S

Respond

dirty;

Write data

back;

s' = I

Error

Mikko Lipasti-University of Wisconsin

Snoopy Cache Coherence

• Origins in shared-memory-bus systems

• All CPUs could observe all other CPUs requests on the
bus; hence “snooping”
– Bus Read, Bus Write, Bus Upgrade

• React appropriately to snooped commands
– Invalidate shared copies

– Provide up-to-date copies of dirty lines

• Flush (writeback) to memory, or

• Direct intervention (modified intervention or dirty
miss)

18 Mikko Lipasti-University of Wisconsin

P0 P1

A 0 A 0

Memory

1 A 1

Directory Cache Coherence

• Directory implementation
– Extra bits stored in memory (directory) record MSI

state of line
– Memory controller maintains coherence based on the

current state
– Other CPUs’ commands are not snooped, instead:

• Directory forwards relevant commands

– Ideal filtering: only observe commands that you need
to observe

– Meanwhile, bandwidth at directory scales by adding
memory controllers as you increase size of the system

Leads to very scalable designs (100s to 1000s of CPUs)

19 Mikko Lipasti-University of Wisconsin

Another Problem: Memory Ordering

• Producer-consumer pattern:
– Update control block, then set flag to

tell others you are done with your
update

– Proc1 reorders load of A ahead of load
of flag, reads stale copy of A but still
sees that flag is clear

• Unexpected outcome

– Does not match programmer’s
expectations

– Just one example of many subtle cases

• ISA specifies rules for what is

allowed:
memory consistency model

Mikko Lipasti-University of Wisconsin 20

Proc 0 Proc 1
st flag=1
st A=1
st flag=0 if (flag==0) {
 read A;
 } else {
 wait;
 } OOO load A

bypasses load
of flag

Sequential Consistency [Lamport 1979]

• Processors treated as if they are interleaved processes on a single
time-shared CPU

• All references must fit into a total global order or interleaving that
does not violate any CPUs program order
– Otherwise sequential consistency not maintained

21

P1 P2

Mikko Lipasti-University of Wisconsin

Constraint graph

• Reasoning about memory consistency [Landin, ISCA-18]

• Directed graph represents a multithreaded execution

– Nodes represent dynamic instruction instances

– Edges represent their transitive orders (program order,
RAW, WAW, WAR).

• If the constraint graph is acyclic, then the execution
is correct

– Cycle implies A must occur before B and B must occur
before A => contradiction

Mikko Lipasti-University of Wisconsin 22

Constraint graph example - SC

Mikko Lipasti-University of Wisconsin 23

Proc 1

ST A

Proc 2

LD A
ST B

LD B Program
order

Program
order

WAR

RAW

Cycle indicates that execution is
incorrect

1.

2.

3.

4.

Anatomy of a cycle

Mikko Lipasti-University of Wisconsin 24

Proc 1

ST A

Proc 2

LD A
ST B

LD B Program
order

Program
order

WAR

RAW

Incoming invalidate

Cache miss

1. Track all OOO
loads

2. Check for remote
writes

High-Performance Sequential Consistency

• Load queue records all speculative loads
• Bus writes/upgrades are checked against LQ
• Any matching load gets marked for replay
• At commit, loads are checked and replayed if necessary

– Results in machine flush, since load-dependent ops must also replay
• Practically, conflicts are rare, so expensive flush is OK

Mikko Lipasti-University of Wisconsin 25

1. Track all OOO
loads

2. Check for remote
writes

Recapping
• Multicore processors need shared memory

• Must use caches to provide latency/bandwidth

• Cache memories must:

– Provide coherent view of memory
must solve cache coherence problem

• Cores and caches must:
– Properly order interleaved memory references
 must implement memory consistency correctly

26 Mikko Lipasti-University of Wisconsin

Coherent Memory Interface

Split Transaction Bus

• “Packet switched” vs. “circuit switched”
• Release bus after request issued
• Allow multiple concurrent requests to overlap memory latency
• Complicates control, arbitration, and coherence protocol

– Transient states for pending blocks (e.g. “req. issued but not completed”)

Example: MSI (SGI-Origin-like, directory, invalidate)

High Level

Example: MSI (SGI-Origin-like, directory, invalidate)

High Level

Busy States

Example: MSI (SGI-Origin-like, directory, invalidate)

High Level

Busy States

Races

Multithreaded Cores

• Basic idea:
– CPU resources are expensive and should not be idle

• 1960’s: Virtual memory and multiprogramming

– Virtual memory/multiprogramming invented to
tolerate latency to secondary storage (disk/tape/etc.)

– Processor-disk speed mismatch:
• microseconds to tens of milliseconds (1:10000 or more)

– OS context switch used to bring in other useful work
while waiting for page fault or explicit read/write

– Cost of context switch must be much less than I/O
latency (easy)

32

Multithreaded Cores

• 1990’s: Memory wall and multithreading
– Processor-DRAM speed mismatch:

• nanosecond to fractions of a microsecond (1:500)

– H/W task switch used to bring in other useful
work while waiting for cache miss

– Cost of context switch must be much less than
cache miss latency

• Very attractive for applications with

abundant thread-level parallelism
– Commercial multi-user workloads

33

Approaches to Multithreading

• Fine-grain multithreading
– Switch contexts at fixed fine-grain interval (e.g. every

cycle)

– Need enough thread contexts to cover stalls

– Example: Tera MTA, 128 contexts, no data caches

• Benefits:
– Conceptually simple, high throughput, deterministic

behavior

• Drawback:
– Very poor single-thread performance

34

Approaches to Multithreading

• Coarse-grain multithreading

– Switch contexts on long-latency events (e.g. cache
misses)

– Need a handful of contexts (2-4) for most benefit

• Example: IBM RS64-IV (Northstar), 2 contexts

• Benefits:

– Simple, improved throughput (~30%), low cost

– Thread priorities mostly avoid single-thread
slowdown

• Drawback:

– Nondeterministic, conflicts in shared caches

35

Approaches to Multithreading
• Simultaneous multithreading

– Multiple concurrent active threads (no notion of thread
switching)

– Need a handful of contexts for most benefit (2-8)

• Example: Intel Pentium 4/Nehalem/Sandybridge, IBM
Power 5/6/7, Alpha EV8/21464

• Benefits:
– Natural fit for OOO superscalar

– Improved throughput

– Low incremental cost

• Drawbacks:
– Additional complexity over OOO superscalar

– Cache conflicts

36

Approaches to Multithreading
• Chip Multiprocessors (CMP)

• Very popular these days
Processor Cores/

chip

Multi-
threaded?

Resources shared

IBM Power 4 2 No L2/L3, system interface

IBM Power 7 8 Yes (4T) Core, L2/L3, DRAM, system
interface

Sun Ultrasparc 2 No System interface

Sun Niagara 8 Yes (4T) Everything

Intel Pentium D 2 Yes (2T) Core, nothing else

Intel Core i7 4 Yes L3, DRAM, system interface

AMD Opteron 2, 4, 6, 12 No System interface (socket), L3

Approaches to Multithreading

• Chip Multithreading (CMT)
– Similar to CMP

• Share something in the core:
– Expensive resource, e.g. floating-point unit (FPU)

– Also share L2, system interconnect (memory and I/O bus)

• Examples:
– Sun Niagara, 8 cores per die, one FPU
– AMD Bulldozer: one FP cluster for every two INT clusters

• Benefits:
– Same as CMP

– Further: amortize cost of expensive resource over multiple cores

• Drawbacks:
– Shared resource may become bottleneck

– 2nd generation (Niagara 2) does not share FPU
38

Multithreaded/Multicore Processors

• Many approaches for executing multiple threads on a single die
– Mix-and-match: IBM Power7 CMP+SMT

39

MT Approach Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system context

switch

Fine-grained Everything but register file and control logic/state Switch every cycle

Coarse-grained Everything but I-fetch buffers, register file and

con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers, return

address stack, architected register file, control

logic/state, reorder buffer, store queue, etc.

All contexts concurrently active; no

switching

CMT Various core components (e.g. FPU), secondary

cache, system interconnect

All contexts concurrently active; no

switching

CMP Secondary cache, system interconnect All contexts concurrently active; no

switching

IBM Power4: Example CMP

SMT Microarchitecture (from Emer, PACT ‘01)

SMT Microarchitecture (from Emer, PACT ‘01)

SMT Performance (from Emer, PACT ‘01)

SMT Summary
• Goal: increase throughput

– Not latency

• Utilize execution resources by sharing among
multiple threads

• Usually some hybrid of fine-grained and SMT
– Front-end is FG, core is SMT, back-end is FG

• Resource sharing

– I$, D$, ALU, decode, rename, commit – shared
– IQ, ROB, LQ, SQ – partitioned vs. shared

Multicore Interconnects
• Bus/crossbar - dismiss as short-term solutions?

• Point-to-point links, many possible topographies

– 2D (suitable for planar realization)
• Ring

• Mesh

• 2D torus

– 3D - may become more interesting with 3D packaging (chip
stacks)
• Hypercube

• 3D Mesh

• 3D torus

45

Cross-bar (e.g. IBM
Power4/5/6/7)

Mikko Lipasti-University of Wisconsin
46

L1 $

Core0

L1 $

Core1

L1 $

Core2

L1 $

Core3

L1 $

Core4

L1 $

Core5

L1 $

Core6

L1 $

Core7

L2 $
Bank0

L2 $
Bank1

L2 $
Bank2

L2 $
Bank3

L2 $
Bank4

L2 $
Bank5

L2 $
Bank6

L2 $
Bank7

8X9 Cross-Bar Interconnect

Memory
Controller

Memory
Controller

Memory
Controller

Memory
Controller

I/O

On-Chip Bus/Crossbar
• Used widely (Power4/5/6/7 Piranha, Niagara, etc.)

– Assumed not scalable

– Is this really true, given on-chip characteristics?

– May scale "far enough" : watch out for arguments at the
limit
• e.g. swizzle-switch makes x-bar scalable enough [UMich]

• Simple, straightforward, nice ordering properties

– Wiring can be a nightmare (for crossbar)

– Bus bandwidth is weak (even multiple busses)

– Compare DEC Piranha 8-lane bus (32GB/s) to Power4
crossbar (100+GB/s)

– Workload demands: commercial vs. scientific

 47 Mikko Lipasti-University of Wisconsin

On-Chip Ring (e.g. Intel)

Mikko Lipasti-University of Wisconsin 48

L1 $

Core0

L1 $

Core1

L1 $

Core2

L1 $

Core3
L2 $
Bank0

L2 $
Bank1

L2 $
Bank2

L2 $
Bank3

Router
Directory

Coherence

QPI/HT
Interconnect

Memory
Controller

On-Chip Ring
• Point-to-point ring interconnect

– Simple, easy

– Nice ordering properties (unidirectional)

– Every request a broadcast (all nodes can snoop)

– Scales poorly: O(n) latency, fixed bandwidth

• Optical ring (nanophotonic)

– HP Labs Corona project

– Much lower latency (speed of light)

– Still fixed bandwidth (but lots of it)

49 Mikko Lipasti-University of Wisconsin

On-Chip Mesh
• Widely assumed in academic literature

• Tilera [Wentzlaff], Intel 80-core prototype

• Not symmetric, so have to watch out for load
imbalance on inner nodes/links

– 2D torus: wraparound links to create symmetry
• Not obviously planar

• Can be laid out in 2D but longer wires, more intersecting links

• Latency, bandwidth scale well

• Lots of recent research in the literature

50 Mikko Lipasti-University of Wisconsin

2D Mesh Example
• Intel Polaris

– 80 core prototype

• Academic Research
ex:

– MIT Raw, TRIPs
• 2-D Mesh Topology

• Scalar Operand
Networks

2D MESH

51
Mikko Lipasti-University of Wisconsin

Virtual Channel Router

VC 0

VC 0

MVC 0

VC 0

VC x

MVC 0

Switch Allocator

Virtual Channel Allocator

VC 0

VC x

Input
Ports

Routing Computation

VC 0

52 Mikko Lipasti-University of Wisconsin

Baseline Router Pipeline

• Canonical 5-stage (+link) pipeline
– BW: Buffer Write

– RC: Routing computation

– VA: Virtual Channel Allocation

– SA: Switch Allocation

– ST: Switch Traversal

– LT: Link Traversal

BW RC VA SA ST LT

53 Mikko Lipasti-University of Wisconsin

On-chip Routers

• 5-stages excessive for 1-cycle LT
• Collapsed into fewer and fewer pipestages

– Speculation rampant

54 Mikko Lipasti-University of Wisconsin

LT
BW
NRC

VA SA ST

LT RC VA SA ST BW

LT
BW
NRC

VA
SA

ST

LT
VA

NRC
SA

ST

Virtual Channel Router Pipeline Evolution

On-Chip Interconnects
• More coverage in ECE/CS 757 (usually)

• Synthesis lecture:

– Natalie Enright Jerger & Li-Shiuan Peh, “On-Chip
Networks”, Synthesis Lectures on Computer
Architecture

– http://www.morganclaypool.com/doi/abs/10.220
0/S00209ED1V01Y200907CAC008

55

http://www.morganclaypool.com/doi/abs/10.2200/S00209ED1V01Y200907CAC008
http://www.morganclaypool.com/doi/abs/10.2200/S00209ED1V01Y200907CAC008

Lecture Summary

• ECE 757 Topics reviewed (briefly):

– Thread-level parallelism

– Synchronization

– Coherence

– Consistency

– Multithreading

– Multicore interconnects

• Many others not covered

