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Parallel Processors 

• Thread-level parallelism 

• Synchronization 

• Coherence 

• Consistency 

• Multithreading 

• Multicore interconnects 



Thread-level Parallelism 

• Instruction-level parallelism 
– Reaps performance by finding independent work in a single 

thread 

• Thread-level parallelism 
– Reaps performance by finding independent work across multiple 

threads 

• Historically, requires explicitly parallel workloads 
– Originate from mainframe time-sharing workloads 
– Even then, CPU speed >> I/O speed 
– Had to overlap I/O latency with “something else” for the CPU to 

do 
– Hence, operating system would schedule other 

tasks/processes/threads that were “time-sharing” the CPU 



Thread-level Parallelism 

• Reduces effectiveness of temporal and spatial locality 



Thread-level Parallelism 
• Initially motivated by time-sharing of single CPU 

– OS, applications written to be multithreaded 

• Quickly led to adoption of multiple CPUs in a single system 
– Enabled scalable product line from entry-level single-CPU systems 

to high-end multiple-CPU systems 
– Same applications, OS, run seamlessly 
– Adding CPUs increases throughput (performance) 

• More recently: 
– Multiple threads per processor core 

• Coarse-grained multithreading (aka “switch-on-event”) 
• Fine-grained multithreading 
• Simultaneous multithreading 

– Multiple processor cores per die 
• Chip multiprocessors (CMP) 
• Chip multithreading (CMT) 
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Amdahl’s Law 

f – fraction that can run in parallel 

1-f – fraction that must run serially 
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Thread-level Parallelism 
• Parallelism limited by sharing 

– Amdahl’s law:  
• Access to shared state must be serialized 
• Serial portion limits parallel speedup 

– Many important applications share (lots of) state 
• Relational databases (transaction processing): GBs of shared state 

– Even completely independent processes “share” virtualized 
hardware through O/S, hence must synchronize access 

 
• Access to shared state/shared variables 

– Must occur in a predictable, repeatable manner 
– Otherwise, chaos results 

 
• Architecture must provide primitives for serializing access 

to shared state 



Synchronization 



Some Synchronization Primitives 

• Only one is necessary 

– Others can be synthesized 

Primitive Semantic Comments 

Fetch-and-add Atomic load/add/store 

operation 

Permits atomic increment, can be 

used to synthesize locks for 

mutual exclusion 

Compare-and-swap Atomic 

load/compare/conditional 

store 

Stores only if load returns an 

expected value 

Load-linked/store-

conditional 

Atomic load/conditional 

store 

Stores only if load/store pair is 

atomic; that is, there is no 

intervening store 



Synchronization Examples 

• All three guarantee same semantic: 
– Initial value of A: 0 
– Final value of A: 4 

• b uses additional lock variable AL to protect critical section with a spin 
lock 
– This is the most common synchronization method in modern 

multithreaded applications 



Multicore Designs 
• Belong to: shared-memory symmetric multiprocessors 

– Many other types of parallel processor systems have been 
proposed and built 

– Key attributes are: 
• Shared memory: all physical memory is accessible to all CPUs 

• Symmetric processors: all CPUs are alike 

– Other parallel processors may: 
• Share some memory, share disks, share nothing 

• May have asymmetric processing units or noncoherent caches 

 
• Shared memory in the presence of caches 

– Need caches to reduce latency per reference 
– Need caches to increase available bandwidth per core 
– But, using caches induces the cache coherence problem 
– Furthermore, how do we interleave references from cores? 
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Cache Coherence Problem 
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Cache Coherence Problem 
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Invalidate Protocol 

• Basic idea: maintain single writer property 
– Only one processor has write permission at any point in time 

• Write handling 
– On write, invalidate all other copies of data 
– Make data private to the writer 
– Allow writes to occur until data is requested 
– Supply modified data to requestor directly or through memory 

• Minimal set of states per cache line: 
– Invalid (not present) 
– Modified (private to this cache) 

• State transitions: 
– Local read or write: I->M, fetch modified 
– Remote read or write: M->I, transmit data (directly or through memory) 
– Writeback: M->I, write data to memory 
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Invalidate Protocol 
Optimizations 

• Observation: data can be read-shared 
– Add S (shared) state to protocol: MSI 

• State transitions: 
– Local read: I->S, fetch shared 

– Local write: I->M, fetch modified; S->M, invalidate other copies 

– Remote read: M->S, supply data 

– Remote write: M->I, supply data; S->I, invalidate local copy 

• Observation: data can be write-private (e.g. stack frame) 
– Avoid invalidate messages in that case 

– Add E (exclusive) state to protocol: MESI 

• State transitions: 
– Local read: I->E if only copy, I->S if other copies exist 

– Local write: E->M silently, S->M, invalidate other copies 
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Sample Invalidate Protocol (MESI) 
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Sample Invalidate Protocol (MESI) 

17 

Current 

State s 

Event and Local Coherence Controller Responses and Actions (s' refers to next state) 

Local Read (LR) Local Write 

(LW) 

Local 

Eviction (EV) 

Bus Read 

(BR) 

Bus Write 

(BW) 

Bus Upgrade 

(BU) 

Invalid (I) Issue bus read 

if no sharers then 

s' = E 

else s' = S 

Issue bus 

write 

s' = M 

s' = I Do nothing Do nothing Do nothing 

Shared (S) Do nothing Issue bus 

upgrade 

s' = M 

s' = I Respond 

shared 

s' = I s' = I 

Exclusive 

(E) 
Do nothing s' = M s' = I Respond 

shared 

s' = S 

s' = I Error 

Modified 

(M) 
Do nothing Do nothing Write data 

back; 

s' = I 

Respond 

dirty; 

Write data 

back; 

s' = S 

Respond 

dirty; 

Write data 

back; 

s' = I 

Error 
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Snoopy Cache Coherence 

• Origins in shared-memory-bus systems 

 

• All CPUs could observe all other CPUs requests on the 
bus; hence “snooping” 
– Bus Read, Bus Write, Bus Upgrade 

 

• React appropriately to snooped commands 
– Invalidate shared copies 

– Provide up-to-date copies of dirty lines 

• Flush (writeback) to memory, or 

• Direct intervention (modified intervention or dirty 
miss) 
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Directory Cache Coherence 

• Directory implementation 
– Extra bits stored in memory (directory) record MSI 

state of line 
– Memory controller maintains coherence based on the 

current state 
– Other CPUs’ commands are not snooped, instead: 

• Directory forwards relevant commands 

– Ideal filtering: only observe commands that you need 
to observe 

– Meanwhile, bandwidth at directory scales by adding 
memory controllers as you increase size of the system 

 

Leads to very scalable designs (100s to 1000s of CPUs) 
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Another Problem: Memory Ordering 

• Producer-consumer pattern: 
– Update control block, then set flag to 

tell others you are done with your 
update 

– Proc1 reorders load of A ahead of load 
of flag, reads stale copy of A but still 
sees that flag is clear 

 
• Unexpected outcome 

– Does not match programmer’s 
expectations 

– Just one example of many subtle cases 

 
• ISA specifies rules for what is 

allowed:  
memory consistency model 
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Proc 0  Proc 1 
st flag=1 
st A=1 
st flag=0  if (flag==0) { 
    read A; 
  } else { 
    wait; 
  } OOO load A 

bypasses load  
of flag 



Sequential Consistency [Lamport 1979] 

• Processors treated as if they are interleaved processes on a single 
time-shared CPU 
 

• All references must fit into a total global order or interleaving that 
does not violate any CPUs program order 
– Otherwise sequential consistency not maintained 
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Constraint graph 

• Reasoning about memory consistency [Landin, ISCA-18] 

• Directed graph represents a multithreaded execution 

– Nodes represent dynamic instruction instances 

– Edges represent their transitive orders (program order, 
RAW, WAW, WAR). 

• If the constraint graph is acyclic, then the execution 
is correct 

– Cycle implies A must occur before B and B must occur 
before A => contradiction 
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Constraint graph example - SC 
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Proc 1 
 
 

ST A 

Proc 2 

LD A 
ST B 

LD B Program 
order 

Program 
order 

WAR 

RAW 

Cycle indicates that execution is 
incorrect 

1. 

2. 

3. 

4. 



Anatomy of a cycle 
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Proc 1 
 
 

ST A 

Proc 2 

LD A 
ST B 

LD B Program 
order 

Program 
order 

WAR 

RAW 

Incoming invalidate 

Cache miss 

1. Track all OOO 
loads 

2. Check for remote 
writes 



High-Performance Sequential Consistency 

• Load queue records all speculative loads 
• Bus writes/upgrades are checked against LQ 
• Any matching load gets marked for replay 
• At commit, loads are checked and replayed if necessary 

– Results in machine flush, since load-dependent ops must also replay 
• Practically, conflicts are rare, so expensive flush is OK 
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1. Track all OOO 
loads 

2. Check for remote 
writes 



Recapping 
• Multicore processors need shared memory 

 
• Must use caches to provide latency/bandwidth 

 
• Cache memories must: 

– Provide coherent view of memory 
must solve cache coherence problem 

 

• Cores and caches must: 
– Properly order interleaved memory references 
 must implement memory consistency correctly 
 

26 Mikko Lipasti-University of Wisconsin 



Coherent Memory Interface 



Split Transaction Bus 

• “Packet switched” vs. “circuit switched” 
• Release bus after request issued 
• Allow multiple concurrent requests to overlap memory latency 
• Complicates control, arbitration, and coherence protocol 

– Transient states for pending blocks (e.g. “req. issued but not completed”) 



Example: MSI (SGI-Origin-like, directory, invalidate) 

High Level 



Example: MSI (SGI-Origin-like, directory, invalidate) 

High Level 

 

Busy States 



Example: MSI (SGI-Origin-like, directory, invalidate) 

High Level 

 

Busy States 

 

Races 



Multithreaded Cores 

• Basic idea:  
– CPU resources are expensive and should not be idle 

 
• 1960’s: Virtual memory and multiprogramming 

– Virtual memory/multiprogramming invented  to 
tolerate latency to secondary storage (disk/tape/etc.) 

– Processor-disk speed mismatch:  
• microseconds to tens of  milliseconds (1:10000 or more) 

– OS context switch used to bring in other useful work 
while waiting for page fault or explicit read/write 

– Cost of context switch must be much less than I/O 
latency (easy) 
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Multithreaded Cores 

• 1990’s: Memory wall and multithreading  
– Processor-DRAM speed mismatch: 

• nanosecond to fractions of a microsecond (1:500) 

– H/W task switch used to bring in other useful 
work while waiting for cache miss 

– Cost of context switch must be much less than 
cache miss latency 

 
• Very attractive for applications with 

abundant thread-level parallelism 
– Commercial multi-user workloads 
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Approaches to Multithreading 

• Fine-grain multithreading 
– Switch contexts at fixed fine-grain interval (e.g. every 

cycle) 

– Need enough thread contexts to cover stalls 

– Example: Tera MTA, 128 contexts, no data caches 

• Benefits:  
– Conceptually simple, high throughput, deterministic 

behavior 

• Drawback:  
– Very poor single-thread performance 
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Approaches to Multithreading 

• Coarse-grain multithreading 

– Switch contexts on long-latency events (e.g. cache 
misses) 

– Need a handful of contexts (2-4) for most benefit 

• Example: IBM RS64-IV (Northstar), 2 contexts 

• Benefits:  

– Simple, improved throughput (~30%), low cost 

– Thread priorities mostly avoid single-thread 
slowdown 

• Drawback:  

– Nondeterministic, conflicts in shared caches 
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Approaches to Multithreading 
• Simultaneous multithreading 

– Multiple concurrent active threads (no notion of thread 
switching) 

– Need a handful of contexts for most benefit (2-8) 

• Example: Intel Pentium 4/Nehalem/Sandybridge, IBM 
Power 5/6/7, Alpha EV8/21464 

• Benefits:  
– Natural fit for OOO superscalar 

– Improved throughput 

– Low incremental cost 

• Drawbacks:  
– Additional complexity over OOO superscalar 

– Cache conflicts 
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Approaches to Multithreading 
• Chip Multiprocessors (CMP) 

• Very popular these days 
Processor Cores/ 

chip 

Multi-
threaded? 

Resources shared 

IBM Power 4 2 No L2/L3, system interface 

IBM Power 7 8 Yes (4T) Core, L2/L3, DRAM, system 
interface 

Sun Ultrasparc 2 No System interface 

Sun Niagara 8 Yes (4T) Everything 

Intel Pentium D 2 Yes (2T) Core, nothing else 

Intel Core i7 4 Yes L3, DRAM, system interface 

AMD Opteron 2, 4, 6, 12 No System interface (socket), L3 



Approaches to Multithreading 

• Chip Multithreading (CMT) 
– Similar to CMP 

• Share something in the core:  
– Expensive resource, e.g. floating-point unit (FPU) 

– Also share L2, system interconnect (memory and I/O bus) 

• Examples: 
–  Sun Niagara, 8 cores per die, one FPU 
– AMD Bulldozer: one FP cluster for every two INT clusters 

• Benefits:  
– Same as CMP 

– Further: amortize cost of expensive resource over multiple cores 

• Drawbacks:  
– Shared resource may become bottleneck 

– 2nd generation (Niagara 2) does not share FPU 
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Multithreaded/Multicore Processors 

• Many approaches for executing multiple threads on a single die 
– Mix-and-match: IBM Power7 CMP+SMT 
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MT Approach Resources shared between threads Context Switch Mechanism 

None Everything Explicit operating system context 

switch 

Fine-grained Everything but register file and control logic/state Switch every cycle 

Coarse-grained Everything but I-fetch buffers, register file and 

con trol logic/state 

Switch on pipeline stall 

SMT Everything but instruction fetch buffers, return 

address stack, architected register file, control 

logic/state, reorder buffer, store queue, etc. 

All contexts concurrently active; no 

switching 

CMT Various core components (e.g. FPU), secondary 

cache, system interconnect 

All contexts concurrently active; no 

switching 

CMP Secondary cache, system interconnect All contexts concurrently active; no 

switching 



IBM Power4: Example CMP 



SMT Microarchitecture (from Emer, PACT ‘01) 



SMT Microarchitecture (from Emer, PACT ‘01) 



SMT Performance (from Emer, PACT ‘01) 



SMT Summary 
• Goal: increase throughput 

– Not latency 
 

• Utilize execution resources by sharing among 
multiple threads 
 

• Usually some hybrid of fine-grained and SMT 
– Front-end is FG, core is SMT, back-end is FG 

 
• Resource sharing 

– I$, D$, ALU, decode, rename, commit – shared 
– IQ, ROB, LQ, SQ – partitioned vs. shared 



Multicore Interconnects 
• Bus/crossbar - dismiss as short-term solutions? 

• Point-to-point links, many possible topographies 

– 2D (suitable for planar realization) 
• Ring 

• Mesh 

• 2D torus 

– 3D - may become more interesting with 3D packaging (chip 
stacks) 
• Hypercube 

• 3D Mesh 

• 3D torus 
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Cross-bar (e.g. IBM 
Power4/5/6/7) 

Mikko Lipasti-University of Wisconsin 
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On-Chip Bus/Crossbar 
• Used widely (Power4/5/6/7 Piranha, Niagara, etc.) 

– Assumed not scalable 

– Is this really true, given on-chip characteristics? 

– May scale "far enough" : watch out for arguments at the 
limit 
• e.g. swizzle-switch makes x-bar scalable enough [UMich] 

• Simple, straightforward, nice ordering properties 

– Wiring can be a nightmare (for crossbar) 

– Bus bandwidth is weak (even multiple busses) 

– Compare DEC Piranha 8-lane bus (32GB/s) to Power4 
crossbar (100+GB/s) 

– Workload demands: commercial vs. scientific 
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On-Chip Ring (e.g. Intel) 
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On-Chip Ring 
• Point-to-point ring interconnect 

– Simple, easy 

– Nice ordering properties (unidirectional) 

– Every request a broadcast (all nodes can snoop) 

– Scales poorly: O(n) latency, fixed bandwidth 

• Optical ring (nanophotonic) 

– HP Labs Corona project 

– Much lower latency (speed of light) 

–  Still fixed bandwidth (but lots of it) 
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On-Chip Mesh 
• Widely assumed in academic literature 

• Tilera  [Wentzlaff], Intel 80-core prototype 

• Not symmetric, so have to watch out for load 
imbalance on inner nodes/links 

– 2D torus: wraparound links to create symmetry 
• Not obviously planar 

• Can be laid out in 2D but longer wires, more intersecting links 

• Latency, bandwidth scale well 

• Lots of recent research in the literature 
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2D Mesh Example 
• Intel Polaris 

– 80 core prototype 

• Academic Research 
ex:  

– MIT Raw, TRIPs 
• 2-D Mesh Topology 

• Scalar Operand 
Networks 

2D MESH 

51 
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Virtual Channel Router 

VC 0 

VC 0 

MVC 0 

VC 0 

VC x 

MVC 0 

Switch Allocator 

Virtual Channel Allocator 

VC 0 

VC x 

Input 
Ports 

Routing Computation 

VC 0 
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Baseline Router Pipeline 

• Canonical 5-stage (+link) pipeline 
– BW: Buffer Write 

– RC: Routing computation 

– VA: Virtual Channel Allocation 

– SA: Switch Allocation 

– ST: Switch Traversal 

– LT: Link Traversal 

BW RC VA SA ST LT 
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On-chip Routers 

• 5-stages excessive for 1-cycle LT 
• Collapsed into fewer and fewer pipestages 

– Speculation rampant 
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Virtual Channel Router Pipeline Evolution 



On-Chip Interconnects 
• More coverage in ECE/CS 757 (usually) 

• Synthesis lecture: 

– Natalie Enright Jerger & Li-Shiuan Peh, “On-Chip 
Networks”, Synthesis Lectures on Computer 
Architecture 

– http://www.morganclaypool.com/doi/abs/10.220
0/S00209ED1V01Y200907CAC008 
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Lecture Summary 

• ECE 757 Topics reviewed (briefly): 

– Thread-level parallelism 

– Synchronization 

– Coherence 

– Consistency 

– Multithreading 

– Multicore interconnects 

• Many others not covered 


