
High Performance Embedded Computing

© 2007 Elsevier

Lecture 2: Introduction to

Embedded Computing

Embedded Computing Systems

Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

© 2006 Elsevier

Topics

 Embedded Computing Landscape.

 Aspects of Embedded System Design.

 Architectures

 Applications

 Methodologies

 Modeling

 Embedded System Applications.

© 2006 Elsevier

The landscape of embedded computing

 Lots of embedded applications require very high
performance:
 Communications.

 Multimedia.

 Graphics.

 Must also meet strict design goals:
 Real-time performance.

 Power/energy consumption.

 Cost.

 How is power different than energy?

 How do embedded system design constraints differ
from general purpose system design constraints?

© 2006 Elsevier

Designing embedded systems

 No one architecture (hardware or software)

can meet the needs of all applications.

 We need to be able to design a system for

our target application or application domain:

 Quickly and efficiently.

 With reliable results.

© 2006 Elsevier

Aspects of embedded system design

© 2006 Elsevier

Architectures

 Both hardware and software architectures are

important.

 The structure of the system determines cost,

power, and performance.

 Different application requirements lead us to

different architectures.

© 2006 Elsevier

Applications

 You can’t design the best embedded systems

if you don’t know anything about your

application.

 You can’t be an expert in everything.

 But a little knowledge goes a long way.

 Domain expertise helps you make trade-offs:

 Can the requirements be relaxed?

 Can one requirement be traded for another?

 How can the system be optimized?

© 2006 Elsevier

Methodologies

 We must be able to reliably design systems:

 Start from requirements/specification.

 Build a system that is fast enough, doesn’t burn
too much energy, and is cheap enough.

 Be able to finish it on time.

 And know before we start how difficult the project
will be.

 Invention lets us get around some key
technical barriers.

 Methodology keeps us going.

© 2006 Elsevier

Modeling

 A key aspect of methodology is modeling.

 Work with a simplified version of the object.

 Modeling helps us predict the consequences

of design decisions.

 Models help us work faster (once we have

the model).

 We can afford to use models if we can reuse

them in several designs---methodology relies

on and enables modeling.

 Pitfall: models can mislead

© 2006 Elsevier

Disciplines in embedded computing

 Core areas:
 Real-time computing : ECE 750

 Hardware/software co-design.

 Closely related areas:
 Computer architecture: ECE 552, 752, 757

 Software engineering.

 Low-power design.

 Operating systems.

 Programming languages and compilers.

 Networking.

 Secure and reliable computing.

© 2006 Elsevier

History of embedded computing
Smart-

phones

Wear

ables

IoT

© 2006 Elsevier

Sample Application domains

 Wireless communication systems

 Radios and networking

 Multimedia

 Image and video processing

 Real-time control

 Automotive and avionic systems

 Smartphone SoCs

© 2006 Elsevier

Radio and networking

 Modern radio systems

carry digital information.

 Perform modulation/

demodulation and error

correction.

 May also be closely tied

to a networking stack.

© 2006 Elsevier

Seven layers of the OSI network stack

1. Physical: Electrical, physical.

2. Data link: Access, error control across a

single link.

3. Network: End-to-end service.

4. Transport: Connection-oriented service.

5. Session: Control activities.

6. Presentation: Data exchange formats.

7. Application: Interface to end use.

© 2006 Elsevier

Networks and embedded systems

 An increasing number of embedded systems

connect to the Internet (IoT)

 Resource management.

 Security.

 Many specialized networks have been

developed for embedded systems:

 Automotive.

 Device control.

 Personal area networks (Bluetooth LE)

 IoT (Zigbee)

© 2006 Elsevier

Radio and software radio

 Wireless receivers (radios) perform several

basic functions:

 Demodulate the signal.

 Detection bits.

 Correct errors.

 Software radio performs at least some of

these functions using software on CPUs.

 Software defined radio (SDR) may be all

software or a mix of HW and SW.

© 2006 Elsevier

SDR Forum tiers of software-defined

radio

0. Hardware radio, not programmable.

1. Software-controlled radio does not perform basic

modulation/filtering in software.

2. Software-defined radio may cover a wide range of

techniques and several modulation methods.

3. Ideal software-defined radio goes straight from A/D

conversion to software.

4. Ultimate software radio is lightweight, low

power/energy, requires no external antenna.

© 2006 Elsevier

Radio operations

 Modulation:

 Combinations of modulation variables (frequency, phase,

amplitide) form symbols.

 Symbols may be viewed as a constellation.

 Error correction:

 Performed on raw bit stream to produce data payload.

 Basic techniques like parity are often not powerful enough

for noisy radio channels.

 Viterbi method is widely used.

 Example high-performance codes: turbo coding, low-

density parity check (LDPC).

© 2006 Elsevier

Radios and networks

 Radio may need to support an existing

network (Internet, etc.).

 Radio may use its own network for

coordination (cell phones).

 A data network may be designed to take

advantage of the unique characteristics of

radios (sensor networks).

© 2006 Elsevier

Example: cdma2000

 Spread-spectrum for cell phones.

 Uses direct-sequence spread spectrum.

Forward

Error

Correction

Coder

Interleaver Modulator Spreader data

Forward channel (transmitter)

Forward

Error

Correction

Decoder

Denterleaver Demodulator Despreader data

Reverse channel (receiver)

© 2006 Elsevier

Multimedia

 Image compression: Each image is coded

separately.

 Video compression: Takes advantage of

correlation between successive frames.

 Perceptual coding: lossy coding, throws away

information that will not be noticed.

© 2006 Elsevier

JPEG

 Discrete cosine transform

(DCT) performed on 8 x 8

blocks typically, puts image

into frequency domain.

 Quantization determines

what image data to throw

out.

 Lossless coding reduces

the size of the

representation.

Discrete

Cosine

Transform

Quantization

Lossless

coding

01001001000

image

compressed

image

data

© 2006 Elsevier

JPEG zigzag pattern

 After quantization,

transform coefficients must

be sent to lossless coder.

 Sending coefficients in

zigzag pattern moves from

low to high spatial

frequencies.

 High frequency coefficients

are more likely to be zero,

producing strings that are

easier to Huffman code.

© 2006 Elsevier

Video compression standards

 Makes use of image compression techniques.

 Adds:

 Support for frame-to-frame coding.

 Audio streams, data, etc. controlled by a system stream.

 Two major families:

 MPEG for broadcasting.

 H.26x for videoconferencing.

 H.264/AVC combines techniques from both

traditions.

© 2006 Elsevier

MPEG-1/2 style compression

© 2006 Elsevier

Motion estimation

 Motion estimation
compares one frame to
another frame.
 Generally performed on

16 x 16 macroblocks.

 Use 2-D correlation to
find new position of a
macroblock in the other
frame.

 Transmit a motion
vector to describe
motion.

SAD = Sx Sy | S(x,y) – R(x,y) |

© 2006 Elsevier

Audio encoding

 Perceptual coding
models the human
auditory system to
predict what information
can be thrown away.

 Subband
decomposition helps
improve the
compression ratio.

 MP3 = MPEG-1 Audio
Layer 3.

© 2006 Elsevier

Automobiles as distributed embedded

systems

© 2006 Elsevier

Automotive and aviation electronics

 Some functions are safety-critical.

 Must operate in real-time.

 Must fit within power budget (limited by generator).

 Must be lightweight to fit within vehicle weight

budget.

 How would processors for these types of systems

differ from those for multimedia systems?

© 2006 Elsevier

Automotive electronics/avionics uses

 Operator vs. passenger: Passenger

operations are less critical, more varied (TV,

Internet, etc.).

 Control vs. instrumentation: Instruments

report on the vehicle, control closes the loop.

 Security: Jeep Cherokee hacked

 https://www.youtube.com/watch?v=MK0SrxBC1xs

 http://www.wired.com/2015/07/hackers-remotely-

kill-jeep-highway/

https://www.youtube.com/watch?v=MK0SrxBC1xs
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

© 2006 Elsevier

Sensor networks

 Used to gather, process data in the field.

 Ad-hoc networks: must set themselves up

without intervention of network manager.

 Often battery powered, very tight energy

budget.

 Generally wirelessly networked.

© 2006 Elsevier

Intel mote2

 Xscale processor.

 256 KB of SRAM.

 802.15.4 radio.

 Integrated antenna, etc.

 Can be programmed in

C, nesC.

 TinyOS provides

control functions.

© 2006 Elsevier

Smartphone SoCs

 System-on-Chip (SoC)

 Integrates peripherals with CPU on same die

 Arguably first: Nintendo Gamecube

 CPU, GPU, memory controller

 Smartphones with mixed-signal design

 Single chip, low cost, incorporates most/all of

analog signal processing hardware into CMOS

 CMOS is not RF friendly

 Initially simple ARM cores + RF

Smartphone SoCs today

 Integrate key components

 CPU (multiple)

 GPU (multiple cores)

 Memory controller

 RF pipeline: Baseband DSP, analog components

 Media: Audio DSP, hardwired codecs

 Camera: image signal processor

 Sensors: sensor hub (always on, ultra low power)

 …

© 2006 Elsevier

High-IPC Processor Evolution

Mikko Lipasti-University of Wisconsin 35

Desktop/Workstation Market

Scalar RISC

Pipeline

1980s:

 MIPS

 SPARC

 Intel 486

2-4 Issue

In-order

Early 1990s:

 IBM RIOS-I

 Intel Pentium

Limited Out-

of-Order

Mid 1990s:

 PowerPC 604

 Intel P6

Large ROB

Out-of-Order

2000s:

 DEC Alpha 21264

 IBM Power4/5

 AMD K8

1985 – 2005: 20 years, 100x frequency

Mobile Market

Scalar RISC

Pipeline

2002: ARM11

2-4 Issue

In-order

2005: Cortex A8

Limited Out-

of-Order

2009: Cortex A9

Large ROB

Out-of-Order

2011: Cortex A15

2002 – 2011: 10 years, 10x frequency

SoC IP Cores/Accelerators

© 2006 Elsevier

 Annotated die photos

reveal how little area

CPU requires

 Apple A8 shown on

right

 From:

http://vlsiarch.eecs.h

arvard.edu/accelerat

ors/die-photo-

analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

SoC IP Cores/Accelerators

© 2006 Elsevier

 Growth in specialized IP blocks

 Many of these are unknown outside Apple

© 2006 Elsevier

Summary

 Embedded Computing Landscape.

 Aspects of Embedded System Design.

 Architectures

 Applications

 Methodologies

 Modeling

 Embedded System Applications.

