
High Performance Embedded Computing

© 2007 Elsevier

Lecture 2: Introduction to

Embedded Computing

Embedded Computing Systems

Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

© 2006 Elsevier

Topics

 Embedded Computing Landscape.

 Aspects of Embedded System Design.

 Architectures

 Applications

 Methodologies

 Modeling

 Embedded System Applications.

© 2006 Elsevier

The landscape of embedded computing

 Lots of embedded applications require very high
performance:
 Communications.

 Multimedia.

 Graphics.

 Must also meet strict design goals:
 Real-time performance.

 Power/energy consumption.

 Cost.

 How is power different than energy?

 How do embedded system design constraints differ
from general purpose system design constraints?

© 2006 Elsevier

Designing embedded systems

 No one architecture (hardware or software)

can meet the needs of all applications.

 We need to be able to design a system for

our target application or application domain:

 Quickly and efficiently.

 With reliable results.

© 2006 Elsevier

Aspects of embedded system design

© 2006 Elsevier

Architectures

 Both hardware and software architectures are

important.

 The structure of the system determines cost,

power, and performance.

 Different application requirements lead us to

different architectures.

© 2006 Elsevier

Applications

 You can’t design the best embedded systems

if you don’t know anything about your

application.

 You can’t be an expert in everything.

 But a little knowledge goes a long way.

 Domain expertise helps you make trade-offs:

 Can the requirements be relaxed?

 Can one requirement be traded for another?

 How can the system be optimized?

© 2006 Elsevier

Methodologies

 We must be able to reliably design systems:

 Start from requirements/specification.

 Build a system that is fast enough, doesn’t burn
too much energy, and is cheap enough.

 Be able to finish it on time.

 And know before we start how difficult the project
will be.

 Invention lets us get around some key
technical barriers.

 Methodology keeps us going.

© 2006 Elsevier

Modeling

 A key aspect of methodology is modeling.

 Work with a simplified version of the object.

 Modeling helps us predict the consequences

of design decisions.

 Models help us work faster (once we have

the model).

 We can afford to use models if we can reuse

them in several designs---methodology relies

on and enables modeling.

 Pitfall: models can mislead

© 2006 Elsevier

Disciplines in embedded computing

 Core areas:
 Real-time computing : ECE 750

 Hardware/software co-design.

 Closely related areas:
 Computer architecture: ECE 552, 752, 757

 Software engineering.

 Low-power design.

 Operating systems.

 Programming languages and compilers.

 Networking.

 Secure and reliable computing.

© 2006 Elsevier

History of embedded computing
Smart-

phones

Wear

ables

IoT

© 2006 Elsevier

Sample Application domains

 Wireless communication systems

 Radios and networking

 Multimedia

 Image and video processing

 Real-time control

 Automotive and avionic systems

 Smartphone SoCs

© 2006 Elsevier

Radio and networking

 Modern radio systems

carry digital information.

 Perform modulation/

demodulation and error

correction.

 May also be closely tied

to a networking stack.

© 2006 Elsevier

Seven layers of the OSI network stack

1. Physical: Electrical, physical.

2. Data link: Access, error control across a

single link.

3. Network: End-to-end service.

4. Transport: Connection-oriented service.

5. Session: Control activities.

6. Presentation: Data exchange formats.

7. Application: Interface to end use.

© 2006 Elsevier

Networks and embedded systems

 An increasing number of embedded systems

connect to the Internet (IoT)

 Resource management.

 Security.

 Many specialized networks have been

developed for embedded systems:

 Automotive.

 Device control.

 Personal area networks (Bluetooth LE)

 IoT (Zigbee)

© 2006 Elsevier

Radio and software radio

 Wireless receivers (radios) perform several

basic functions:

 Demodulate the signal.

 Detection bits.

 Correct errors.

 Software radio performs at least some of

these functions using software on CPUs.

 Software defined radio (SDR) may be all

software or a mix of HW and SW.

© 2006 Elsevier

SDR Forum tiers of software-defined

radio

0. Hardware radio, not programmable.

1. Software-controlled radio does not perform basic

modulation/filtering in software.

2. Software-defined radio may cover a wide range of

techniques and several modulation methods.

3. Ideal software-defined radio goes straight from A/D

conversion to software.

4. Ultimate software radio is lightweight, low

power/energy, requires no external antenna.

© 2006 Elsevier

Radio operations

 Modulation:

 Combinations of modulation variables (frequency, phase,

amplitide) form symbols.

 Symbols may be viewed as a constellation.

 Error correction:

 Performed on raw bit stream to produce data payload.

 Basic techniques like parity are often not powerful enough

for noisy radio channels.

 Viterbi method is widely used.

 Example high-performance codes: turbo coding, low-

density parity check (LDPC).

© 2006 Elsevier

Radios and networks

 Radio may need to support an existing

network (Internet, etc.).

 Radio may use its own network for

coordination (cell phones).

 A data network may be designed to take

advantage of the unique characteristics of

radios (sensor networks).

© 2006 Elsevier

Example: cdma2000

 Spread-spectrum for cell phones.

 Uses direct-sequence spread spectrum.

Forward

Error

Correction

Coder

Interleaver Modulator Spreader data

Forward channel (transmitter)

Forward

Error

Correction

Decoder

Denterleaver Demodulator Despreader data

Reverse channel (receiver)

© 2006 Elsevier

Multimedia

 Image compression: Each image is coded

separately.

 Video compression: Takes advantage of

correlation between successive frames.

 Perceptual coding: lossy coding, throws away

information that will not be noticed.

© 2006 Elsevier

JPEG

 Discrete cosine transform

(DCT) performed on 8 x 8

blocks typically, puts image

into frequency domain.

 Quantization determines

what image data to throw

out.

 Lossless coding reduces

the size of the

representation.

Discrete

Cosine

Transform

Quantization

Lossless

coding

01001001000

image

compressed

image

data

© 2006 Elsevier

JPEG zigzag pattern

 After quantization,

transform coefficients must

be sent to lossless coder.

 Sending coefficients in

zigzag pattern moves from

low to high spatial

frequencies.

 High frequency coefficients

are more likely to be zero,

producing strings that are

easier to Huffman code.

© 2006 Elsevier

Video compression standards

 Makes use of image compression techniques.

 Adds:

 Support for frame-to-frame coding.

 Audio streams, data, etc. controlled by a system stream.

 Two major families:

 MPEG for broadcasting.

 H.26x for videoconferencing.

 H.264/AVC combines techniques from both

traditions.

© 2006 Elsevier

MPEG-1/2 style compression

© 2006 Elsevier

Motion estimation

 Motion estimation
compares one frame to
another frame.
 Generally performed on

16 x 16 macroblocks.

 Use 2-D correlation to
find new position of a
macroblock in the other
frame.

 Transmit a motion
vector to describe
motion.

SAD = Sx Sy | S(x,y) – R(x,y) |

© 2006 Elsevier

Audio encoding

 Perceptual coding
models the human
auditory system to
predict what information
can be thrown away.

 Subband
decomposition helps
improve the
compression ratio.

 MP3 = MPEG-1 Audio
Layer 3.

© 2006 Elsevier

Automobiles as distributed embedded

systems

© 2006 Elsevier

Automotive and aviation electronics

 Some functions are safety-critical.

 Must operate in real-time.

 Must fit within power budget (limited by generator).

 Must be lightweight to fit within vehicle weight

budget.

 How would processors for these types of systems

differ from those for multimedia systems?

© 2006 Elsevier

Automotive electronics/avionics uses

 Operator vs. passenger: Passenger

operations are less critical, more varied (TV,

Internet, etc.).

 Control vs. instrumentation: Instruments

report on the vehicle, control closes the loop.

 Security: Jeep Cherokee hacked

 https://www.youtube.com/watch?v=MK0SrxBC1xs

 http://www.wired.com/2015/07/hackers-remotely-

kill-jeep-highway/

https://www.youtube.com/watch?v=MK0SrxBC1xs
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

© 2006 Elsevier

Sensor networks

 Used to gather, process data in the field.

 Ad-hoc networks: must set themselves up

without intervention of network manager.

 Often battery powered, very tight energy

budget.

 Generally wirelessly networked.

© 2006 Elsevier

Intel mote2

 Xscale processor.

 256 KB of SRAM.

 802.15.4 radio.

 Integrated antenna, etc.

 Can be programmed in

C, nesC.

 TinyOS provides

control functions.

© 2006 Elsevier

Smartphone SoCs

 System-on-Chip (SoC)

 Integrates peripherals with CPU on same die

 Arguably first: Nintendo Gamecube

 CPU, GPU, memory controller

 Smartphones with mixed-signal design

 Single chip, low cost, incorporates most/all of

analog signal processing hardware into CMOS

 CMOS is not RF friendly

 Initially simple ARM cores + RF

Smartphone SoCs today

 Integrate key components

 CPU (multiple)

 GPU (multiple cores)

 Memory controller

 RF pipeline: Baseband DSP, analog components

 Media: Audio DSP, hardwired codecs

 Camera: image signal processor

 Sensors: sensor hub (always on, ultra low power)

 …

© 2006 Elsevier

High-IPC Processor Evolution

Mikko Lipasti-University of Wisconsin 35

Desktop/Workstation Market

Scalar RISC

Pipeline

1980s:

 MIPS

 SPARC

 Intel 486

2-4 Issue

In-order

Early 1990s:

 IBM RIOS-I

 Intel Pentium

Limited Out-

of-Order

Mid 1990s:

 PowerPC 604

 Intel P6

Large ROB

Out-of-Order

2000s:

 DEC Alpha 21264

 IBM Power4/5

 AMD K8

1985 – 2005: 20 years, 100x frequency

Mobile Market

Scalar RISC

Pipeline

2002: ARM11

2-4 Issue

In-order

2005: Cortex A8

Limited Out-

of-Order

2009: Cortex A9

Large ROB

Out-of-Order

2011: Cortex A15

2002 – 2011: 10 years, 10x frequency

SoC IP Cores/Accelerators

© 2006 Elsevier

 Annotated die photos

reveal how little area

CPU requires

 Apple A8 shown on

right

 From:

http://vlsiarch.eecs.h

arvard.edu/accelerat

ors/die-photo-

analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

SoC IP Cores/Accelerators

© 2006 Elsevier

 Growth in specialized IP blocks

 Many of these are unknown outside Apple

© 2006 Elsevier

Summary

 Embedded Computing Landscape.

 Aspects of Embedded System Design.

 Architectures

 Applications

 Methodologies

 Modeling

 Embedded System Applications.

