Lecture 3: Design
Methodologies

Embedded Computing Systems
Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

High Performance Embedded Computing
© 2007 Elsevier



Topics

Design Goals
Design methodologies.
Methodologies and standards.
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Design goals

Functional requirements: input/output
relations.

Non-functional requirements: cost,
performance, power, etc.

Some project goals may be difficult to
measure.

o What types of goals are more difficult to measure?
o Why are these goals important?
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Aspects of performance

Embedded system performance can be
measured In many ways:

o Average vs. worst-case vs. best-case.
o Throughput vs. latency.
o Peak vs. sustained.

Why might we care about best-case
performance? Average-case? Worst-case?

How Is performance estimated/measured?
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Energy/power

Energy consumption (joules) is important for
battery life.

Power consumption (Watts = joules/sec) Is
Important for heat generation or for
generator-powered systems (e.g. cars).

What are some techniques for improving
energy and power consumption?
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Cost

Manufacturing costs

o Determined by the cost of components and the
manufacturing process used

o Must be paid off across all the systems.
Hardest in small-volume applications.

o Incurred for each device
Designed costs determined by labor and the

equipment used to support the design
process

Lifetime costs include software and hardware
maintenance and upgrades.
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Other design attributes

Design time must be reasonable. May need
to finish by a certain date.

o Time to market

System must be reliable; reliability
requirements differ widely.

Quality includes reliability and other aspects:
usability, durabillity, etc.

What other attributes may be important in
embedded systems?
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Design methodology

Design methodology: a procedure for
creating an implementation from a set of
requirements.

Methodology Is important in embedded
computing:
o Must design many different systems.

o We may use same/similar components in many
different designs.

o Both design time and results must be predictable.
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Embedded system design challenges

Design space is large and irregular.

We don’t have synthesis tools for many
steps.

Can’t simulate everything.

May need to build special-purpose simulators
quickly.

Often need to start software development
before hardware is finished.
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Design complexity vs. designer

productivity
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How can design complexity be managed?
How can designer productivity be improved?
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Basic design methodologies

Figure out flow of decision-making.

Determine when bottom-up information is
generated.

Determine when top-down decisions are
made.
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Software design methodologies:

waterfall and spiral models
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Hardware design flow
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Hardware /software co-design flow
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Platform-based design

Platform includes

. System Customization
hardware, supporting
software.
Two stage process:

o Design the platform.
o Use the platform. - @
Platform can be reused \Iaurements Platform

to host many different -

systems.
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Platform design

Turn system requirements and software
models into detailed requirements.

o Use profiling and analysis tools to measure
existing executable specifications.

Explore the design space manually or
automatically.

Optimize the system architecture based on
the results of simulation and other steps.

Develop hardware abstraction layers and
other software.
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Programming platforms

Programming environment must be
customized to the platform:

o Multiple CPUs.

o Specialized memory.

o Specialized I/O devices.

_ibraries are often used to glue together
processors on platforms.

Debugging environments are a particular
challenge.
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Standards-based design methodologies

Standards enable large markets.

Standards generally allow products to be
differentiated.

o Different implementations of operations, so long
as 1/O behavior is maintained.

o User interface is often not standardized.
Standard may dictate certain non-functional

requirements (power consumption, latency)
and implementation techniques.
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Reterence implementations

Executable program that complies with the I/O
behavior of the standard.
o May be written in a variety of languages.

In some cases, the reference implementation is the
most complete description of the standard.

Reference implementation is often not well-suited to
embedded system implementation:

o Single process.

o Infinite memory.

o Non-real-time behavior.
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Designing standards-based systems

Design and implement system components
that are not part of the standard.

Perform platform-independent optimizations.

Analyze optimized version of reference
Implementation.

Design hardware platform.

Optimize system software based on
platform.

Further optimize platform.
Test for conformity to standard.
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H/264/AVC

Implements video coding for a wide range of
applications:

o Broadcast and videoconferencing.

o Cell phone-sized screens to HDTV.

Video codec reference implementation
contains 120,000 lines of C code.
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Design verification and validation

Testing exercises an implementation by
supplying inputs and testing outputs.

Validation compares the implementation to a
specification or requirements.

Verification may be performed at any design
stage; compares design at one level of
abstraction to another.
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Design verification techniques

Simulation uses an executable model, relies
on inputs.

Formal methods generate a (possibly
specialized) proof.

Manual methods, such as design reviews,
catch design errors informally.
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A methodology of methodologies

Embedded systems include both hardware
and software.

2 HW, SW have their own design methodologies.
Embedded system methodologies control the
overall process, HW/SW integration, etc.

o Must take into account the good and bad points of
hardware and software design methodologies
used.
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Useful methodologies

Software performance analysis.
Architectural optimization.
Hardware/software co-design.
Network design.

Software verification.
Software tool generation.

© 2006 Elsevier



Joint algorithm and architecture
development

Some algorithm design is necessarily
performed before platform design.

Algorithm development can be informed by
platform architecture design.

o Performance/power/cost trade-offs.

o Design trends over several generations.
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Summary

Design Goals
Design methodologies.
Methodologies and standards.
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