Lecture 3: Design
Methodologies

Embedded Computing Systems
Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

High Performance Embedded Computing
© 2007 Elsevier

Topics

Design Goals
Design methodologies.
Methodologies and standards.

© 2006 Elsevier

Design goals

Functional requirements: input/output
relations.

Non-functional requirements: cost,
performance, power, etc.

Some project goals may be difficult to
measure.

o What types of goals are more difficult to measure?
o Why are these goals important?

© 2006 Elsevier

Aspects of performance

Embedded system performance can be
measured In many ways:

o Average vs. worst-case vs. best-case.
o Throughput vs. latency.
o Peak vs. sustained.

Why might we care about best-case
performance? Average-case? Worst-case?

How Is performance estimated/measured?

© 2006 Elsevier

Energy/power

Energy consumption (joules) is important for
battery life.

Power consumption (Watts = joules/sec) Is
Important for heat generation or for
generator-powered systems (e.g. cars).

What are some techniques for improving
energy and power consumption?

© 2006 Elsevier

Cost

Manufacturing costs

o Determined by the cost of components and the
manufacturing process used

o Must be paid off across all the systems.
Hardest in small-volume applications.

o Incurred for each device
Designed costs determined by labor and the

equipment used to support the design
process

Lifetime costs include software and hardware
maintenance and upgrades.

© 2006 Elsevier

Other design attributes

Design time must be reasonable. May need
to finish by a certain date.

o Time to market

System must be reliable; reliability
requirements differ widely.

Quality includes reliability and other aspects:
usability, durabillity, etc.

What other attributes may be important in
embedded systems?

© 2006 Elsevier

Design methodology

Design methodology: a procedure for
creating an implementation from a set of
requirements.

Methodology Is important in embedded
computing:
o Must design many different systems.

o We may use same/similar components in many
different designs.

o Both design time and results must be predictable.

© 2006 Elsevier

Embedded system design challenges

Design space is large and irregular.

We don’t have synthesis tools for many
steps.

Can’t simulate everything.

May need to build special-purpose simulators
quickly.

Often need to start software development
before hardware is finished.

© 2006 Elsevier

Design complexity vs. designer

productivity
Logic transistors Designer productivity
per chip transistors per
(thousands) person per month
1,000,000 . - 10,000
100.000 Design complexity 1000
10,000 100
1000 =t 10
100 — 1
10 . == Designer productivity

| I | I |
1980 1985 1990 1995 2000 2005 2010

How can design complexity be managed?
How can designer productivity be improved?

© 2006 Elsevier

Basic design methodologies

Figure out flow of decision-making.

Determine when bottom-up information is
generated.

Determine when top-down decisions are
made.

© 2006 Elsevier

Software design methodologies:

waterfall and spiral models
A

_\ Prototype

Requirements
\\) Initial design
Specification
\\ D Refined design
Architecture

\ \ Requirements “p
Coding >
‘}/I;aenance \ Architecture

Coding

Waterfall Spiral

© 2006 Elsevier

Hardware design flow

S

Cell
library
\-_.____________/

-

Technology
database

Register-transfer
specification

State assignment,
minimization, etc.

!

Technology-independent
logic synthesis

- Routability model

Vs

-

Y

Technology-dependent
logic synthesis

——. Timing analysis

~ Wiring model
P

s

~

\..___________—/

Y

Place
and route

© 2006 Elsevier

—~. Timing analysis

- — — — — — Timing analysis

Hardware /software co-design flow

Specification

System
analysis
Software/hardware . — — - Performance, power
partitioning analysis
Hardware Architect Software
specification chitecture specification
— -
Hardware Hardware Software Software
modules implementation implementation modules
DN
Integration
and debugging

© 2006 Elsevier

Platform-based design

Platform includes

. System Customization
hardware, supporting
software.
Two stage process:

o Design the platform.
o Use the platform. - @
Platform can be reused \Iaurements Platform

to host many different -

systems.

© 2006 Elsevier

Platform
design

Platform design

Turn system requirements and software
models into detailed requirements.

o Use profiling and analysis tools to measure
existing executable specifications.

Explore the design space manually or
automatically.

Optimize the system architecture based on
the results of simulation and other steps.

Develop hardware abstraction layers and
other software.

© 2006 Elsevier

Programming platforms

Programming environment must be
customized to the platform:

o Multiple CPUs.

o Specialized memory.

o Specialized I/O devices.

_ibraries are often used to glue together
processors on platforms.

Debugging environments are a particular
challenge.

© 2006 Elsevier

Standards-based design methodologies

Standards enable large markets.

Standards generally allow products to be
differentiated.

o Different implementations of operations, so long
as 1/O behavior is maintained.

o User interface is often not standardized.
Standard may dictate certain non-functional

requirements (power consumption, latency)
and implementation techniques.

© 2006 Elsevier

Reterence implementations

Executable program that complies with the I/O
behavior of the standard.
o May be written in a variety of languages.

In some cases, the reference implementation is the
most complete description of the standard.

Reference implementation is often not well-suited to
embedded system implementation:

o Single process.

o Infinite memory.

o Non-real-time behavior.

© 2006 Elsevier

Designing standards-based systems

Design and implement system components
that are not part of the standard.

Perform platform-independent optimizations.

Analyze optimized version of reference
Implementation.

Design hardware platform.

Optimize system software based on
platform.

Further optimize platform.
Test for conformity to standard.

© 2006 Elsevier

H/264/AVC

Implements video coding for a wide range of
applications:

o Broadcast and videoconferencing.

o Cell phone-sized screens to HDTV.

Video codec reference implementation
contains 120,000 lines of C code.

© 2006 Elsevier

Design verification and validation

Testing exercises an implementation by
supplying inputs and testing outputs.

Validation compares the implementation to a
specification or requirements.

Verification may be performed at any design
stage; compares design at one level of
abstraction to another.

© 2006 Elsevier

Design verification techniques

Simulation uses an executable model, relies
on inputs.

Formal methods generate a (possibly
specialized) proof.

Manual methods, such as design reviews,
catch design errors informally.

© 2006 Elsevier

A methodology of methodologies

Embedded systems include both hardware
and software.

2 HW, SW have their own design methodologies.
Embedded system methodologies control the
overall process, HW/SW integration, etc.

o Must take into account the good and bad points of
hardware and software design methodologies
used.

© 2006 Elsevier

Useful methodologies

Software performance analysis.
Architectural optimization.
Hardware/software co-design.
Network design.

Software verification.
Software tool generation.

© 2006 Elsevier

Joint algorithm and architecture
development

Some algorithm design is necessarily
performed before platform design.

Algorithm development can be informed by
platform architecture design.

o Performance/power/cost trade-offs.

o Design trends over several generations.

© 2006 Elsevier

Summary

Design Goals
Design methodologies.
Methodologies and standards.

© 2006 Elsevier

