
High Performance Embedded Computing

© 2007 Elsevier

Lecture 3: Design

Methodologies

Embedded Computing Systems

Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

© 2006 Elsevier

Topics

 Design Goals

 Design methodologies.

 Methodologies and standards.

© 2006 Elsevier

Design goals

 Functional requirements: input/output

relations.

 Non-functional requirements: cost,

performance, power, etc.

 Some project goals may be difficult to

measure.

 What types of goals are more difficult to measure?

 Why are these goals important?

© 2006 Elsevier

Aspects of performance

 Embedded system performance can be

measured in many ways:

 Average vs. worst-case vs. best-case.

 Throughput vs. latency.

 Peak vs. sustained.

 Why might we care about best-case

performance? Average-case? Worst-case?

 How is performance estimated/measured?

© 2006 Elsevier

Energy/power

 Energy consumption (joules) is important for

battery life.

 Power consumption (Watts = joules/sec) is

important for heat generation or for

generator-powered systems (e.g. cars).

 What are some techniques for improving

energy and power consumption?

© 2006 Elsevier

Cost

 Manufacturing costs

 Determined by the cost of components and the
manufacturing process used

 Must be paid off across all the systems.
 Hardest in small-volume applications.

 Incurred for each device

 Designed costs determined by labor and the
equipment used to support the design
process

 Lifetime costs include software and hardware
maintenance and upgrades.

© 2006 Elsevier

Other design attributes

 Design time must be reasonable. May need

to finish by a certain date.

 Time to market

 System must be reliable; reliability

requirements differ widely.

 Quality includes reliability and other aspects:

usability, durability, etc.

 What other attributes may be important in

embedded systems?

© 2006 Elsevier

Design methodology

 Design methodology: a procedure for

creating an implementation from a set of

requirements.

 Methodology is important in embedded

computing:

 Must design many different systems.

 We may use same/similar components in many

different designs.

 Both design time and results must be predictable.

© 2006 Elsevier

Embedded system design challenges

 Design space is large and irregular.

 We don’t have synthesis tools for many

steps.

 Can’t simulate everything.

 May need to build special-purpose simulators

quickly.

 Often need to start software development

before hardware is finished.

© 2006 Elsevier

Design complexity vs. designer

productivity

 How can design complexity be managed?

 How can designer productivity be improved?

© 2006 Elsevier

Basic design methodologies

 Figure out flow of decision-making.

 Determine when bottom-up information is

generated.

 Determine when top-down decisions are

made.

© 2006 Elsevier

Software design methodologies:

waterfall and spiral models

© 2006 Elsevier

Hardware design flow

© 2006 Elsevier

Hardware/software co-design flow

© 2006 Elsevier

Platform-based design

 Platform includes

hardware, supporting

software.

 Two stage process:

 Design the platform.

 Use the platform.

 Platform can be reused

to host many different

systems.

© 2006 Elsevier

Platform design

 Turn system requirements and software
models into detailed requirements.

 Use profiling and analysis tools to measure
existing executable specifications.

 Explore the design space manually or
automatically.

 Optimize the system architecture based on
the results of simulation and other steps.

 Develop hardware abstraction layers and
other software.

© 2006 Elsevier

Programming platforms

 Programming environment must be

customized to the platform:

 Multiple CPUs.

 Specialized memory.

 Specialized I/O devices.

 Libraries are often used to glue together

processors on platforms.

 Debugging environments are a particular

challenge.

© 2006 Elsevier

Standards-based design methodologies

 Standards enable large markets.

 Standards generally allow products to be

differentiated.

 Different implementations of operations, so long

as I/O behavior is maintained.

 User interface is often not standardized.

 Standard may dictate certain non-functional

requirements (power consumption, latency)

and implementation techniques.

© 2006 Elsevier

Reference implementations

 Executable program that complies with the I/O

behavior of the standard.

 May be written in a variety of languages.

 In some cases, the reference implementation is the

most complete description of the standard.

 Reference implementation is often not well-suited to

embedded system implementation:

 Single process.

 Infinite memory.

 Non-real-time behavior.

© 2006 Elsevier

Designing standards-based systems

1. Design and implement system components
that are not part of the standard.

2. Perform platform-independent optimizations.

3. Analyze optimized version of reference
implementation.

4. Design hardware platform.

5. Optimize system software based on
platform.

6. Further optimize platform.

7. Test for conformity to standard.

© 2006 Elsevier

H/264/AVC

 Implements video coding for a wide range of

applications:

 Broadcast and videoconferencing.

 Cell phone-sized screens to HDTV.

 Video codec reference implementation

contains 120,000 lines of C code.

© 2006 Elsevier

Design verification and validation

 Testing exercises an implementation by

supplying inputs and testing outputs.

 Validation compares the implementation to a

specification or requirements.

 Verification may be performed at any design

stage; compares design at one level of

abstraction to another.

© 2006 Elsevier

Design verification techniques

 Simulation uses an executable model, relies

on inputs.

 Formal methods generate a (possibly

specialized) proof.

 Manual methods, such as design reviews,

catch design errors informally.

© 2006 Elsevier

A methodology of methodologies

 Embedded systems include both hardware

and software.

 HW, SW have their own design methodologies.

 Embedded system methodologies control the

overall process, HW/SW integration, etc.

 Must take into account the good and bad points of

hardware and software design methodologies

used.

© 2006 Elsevier

Useful methodologies

 Software performance analysis.

 Architectural optimization.

 Hardware/software co-design.

 Network design.

 Software verification.

 Software tool generation.

© 2006 Elsevier

Joint algorithm and architecture

development

 Some algorithm design is necessarily

performed before platform design.

 Algorithm development can be informed by

platform architecture design.

 Performance/power/cost trade-offs.

 Design trends over several generations.

© 2006 Elsevier

Summary

 Design Goals

 Design methodologies.

 Methodologies and standards.

