
High Performance Embedded Computing

© 2007 Elsevier

Lecture 3: Design

Methodologies

Embedded Computing Systems

Mikko Lipasti, adapted from M. Schulte

Based on slides and textbook from Wayne Wolf

© 2006 Elsevier

Topics

 Design Goals

 Design methodologies.

 Methodologies and standards.

© 2006 Elsevier

Design goals

 Functional requirements: input/output

relations.

 Non-functional requirements: cost,

performance, power, etc.

 Some project goals may be difficult to

measure.

 What types of goals are more difficult to measure?

 Why are these goals important?

© 2006 Elsevier

Aspects of performance

 Embedded system performance can be

measured in many ways:

 Average vs. worst-case vs. best-case.

 Throughput vs. latency.

 Peak vs. sustained.

 Why might we care about best-case

performance? Average-case? Worst-case?

 How is performance estimated/measured?

© 2006 Elsevier

Energy/power

 Energy consumption (joules) is important for

battery life.

 Power consumption (Watts = joules/sec) is

important for heat generation or for

generator-powered systems (e.g. cars).

 What are some techniques for improving

energy and power consumption?

© 2006 Elsevier

Cost

 Manufacturing costs

 Determined by the cost of components and the
manufacturing process used

 Must be paid off across all the systems.
 Hardest in small-volume applications.

 Incurred for each device

 Designed costs determined by labor and the
equipment used to support the design
process

 Lifetime costs include software and hardware
maintenance and upgrades.

© 2006 Elsevier

Other design attributes

 Design time must be reasonable. May need

to finish by a certain date.

 Time to market

 System must be reliable; reliability

requirements differ widely.

 Quality includes reliability and other aspects:

usability, durability, etc.

 What other attributes may be important in

embedded systems?

© 2006 Elsevier

Design methodology

 Design methodology: a procedure for

creating an implementation from a set of

requirements.

 Methodology is important in embedded

computing:

 Must design many different systems.

 We may use same/similar components in many

different designs.

 Both design time and results must be predictable.

© 2006 Elsevier

Embedded system design challenges

 Design space is large and irregular.

 We don’t have synthesis tools for many

steps.

 Can’t simulate everything.

 May need to build special-purpose simulators

quickly.

 Often need to start software development

before hardware is finished.

© 2006 Elsevier

Design complexity vs. designer

productivity

 How can design complexity be managed?

 How can designer productivity be improved?

© 2006 Elsevier

Basic design methodologies

 Figure out flow of decision-making.

 Determine when bottom-up information is

generated.

 Determine when top-down decisions are

made.

© 2006 Elsevier

Software design methodologies:

waterfall and spiral models

© 2006 Elsevier

Hardware design flow

© 2006 Elsevier

Hardware/software co-design flow

© 2006 Elsevier

Platform-based design

 Platform includes

hardware, supporting

software.

 Two stage process:

 Design the platform.

 Use the platform.

 Platform can be reused

to host many different

systems.

© 2006 Elsevier

Platform design

 Turn system requirements and software
models into detailed requirements.

 Use profiling and analysis tools to measure
existing executable specifications.

 Explore the design space manually or
automatically.

 Optimize the system architecture based on
the results of simulation and other steps.

 Develop hardware abstraction layers and
other software.

© 2006 Elsevier

Programming platforms

 Programming environment must be

customized to the platform:

 Multiple CPUs.

 Specialized memory.

 Specialized I/O devices.

 Libraries are often used to glue together

processors on platforms.

 Debugging environments are a particular

challenge.

© 2006 Elsevier

Standards-based design methodologies

 Standards enable large markets.

 Standards generally allow products to be

differentiated.

 Different implementations of operations, so long

as I/O behavior is maintained.

 User interface is often not standardized.

 Standard may dictate certain non-functional

requirements (power consumption, latency)

and implementation techniques.

© 2006 Elsevier

Reference implementations

 Executable program that complies with the I/O

behavior of the standard.

 May be written in a variety of languages.

 In some cases, the reference implementation is the

most complete description of the standard.

 Reference implementation is often not well-suited to

embedded system implementation:

 Single process.

 Infinite memory.

 Non-real-time behavior.

© 2006 Elsevier

Designing standards-based systems

1. Design and implement system components
that are not part of the standard.

2. Perform platform-independent optimizations.

3. Analyze optimized version of reference
implementation.

4. Design hardware platform.

5. Optimize system software based on
platform.

6. Further optimize platform.

7. Test for conformity to standard.

© 2006 Elsevier

H/264/AVC

 Implements video coding for a wide range of

applications:

 Broadcast and videoconferencing.

 Cell phone-sized screens to HDTV.

 Video codec reference implementation

contains 120,000 lines of C code.

© 2006 Elsevier

Design verification and validation

 Testing exercises an implementation by

supplying inputs and testing outputs.

 Validation compares the implementation to a

specification or requirements.

 Verification may be performed at any design

stage; compares design at one level of

abstraction to another.

© 2006 Elsevier

Design verification techniques

 Simulation uses an executable model, relies

on inputs.

 Formal methods generate a (possibly

specialized) proof.

 Manual methods, such as design reviews,

catch design errors informally.

© 2006 Elsevier

A methodology of methodologies

 Embedded systems include both hardware

and software.

 HW, SW have their own design methodologies.

 Embedded system methodologies control the

overall process, HW/SW integration, etc.

 Must take into account the good and bad points of

hardware and software design methodologies

used.

© 2006 Elsevier

Useful methodologies

 Software performance analysis.

 Architectural optimization.

 Hardware/software co-design.

 Network design.

 Software verification.

 Software tool generation.

© 2006 Elsevier

Joint algorithm and architecture

development

 Some algorithm design is necessarily

performed before platform design.

 Algorithm development can be informed by

platform architecture design.

 Performance/power/cost trade-offs.

 Design trends over several generations.

© 2006 Elsevier

Summary

 Design Goals

 Design methodologies.

 Methodologies and standards.

