
ECE 752 Review: Modern Processors

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by John Shen,
Mark Hill, David Wood, Guri Sohi, Jim Smith, Erika Gunadi,

Mitch Hayenga, Vignyan Reddy, Dibakar Gope

High-IPC Processor Evolution

Mikko Lipasti-University of Wisconsin 2

Desktop/Workstation Market

Scalar RISC
Pipeline

1980s:
 MIPS
 SPARC
 Intel 486

2-4 Issue
In-order

Early 1990s:
 IBM RIOS-I
 Intel Pentium

Limited Out-
of-Order

Mid 1990s:
 PowerPC 604
 Intel P6

Large ROB
Out-of-Order

2000s:
 DEC Alpha 21264
 IBM Power4/5
 AMD K8

1985 – 2005: 20 years, 100x frequency

Mobile Market

Scalar RISC
Pipeline

2002: ARM11

2-4 Issue
In-order

2005: Cortex A8

Limited Out-
of-Order

2009: Cortex A9

Large ROB
Out-of-Order

2011: Cortex A15

2002 – 2011: 10 years, 10x frequency

A Typical High-IPC Processor

Mikko Lipasti-University of Wisconsin 3

Power Consumption

• Actual computation overwhelmed by
overhead of aggressive execution pipeline

Mikko Lipasti-University of Wisconsin 4

ARM Cortex A15 [Source: NVIDIA] Core i7 [Source: Intel]

Mobile CPUs: What Next?

ARM ISA compatibility …

Mikko Lipasti-University of Wisconsin 5

Processor Performance = ---------------
Time

 Program

Architecture --> Implementation --> Realization

 Compiler Designer Processor Designer Chip Designer

Instructions Cycles

 Program Instruction
Time
Cycle

 (code size)

= X X

 (CPI) (cycle time)

NVIDIA
Project

Denver?

Frequency: maxed out due to power

ILP bag of tricks from desktop CPUs: empty

ILP is our only option

• Attack and reduce overheads one by one

• Free up power budget for actual computation

Mikko Lipasti-University of Wisconsin 6

ARM Cortex A15 [Source: NVIDIA]

Lecture Summary

• Motivation

• Brief review: High-IPC, out-of-order processors

– Instruction flow

– Register Dataflow

– Memory Dataflow

• Caches and Memory Hierarchy

Mikko Lipasti-University of Wisconsin 7

High-IPC Processor

Mikko Lipasti-University of Wisconsin 8

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Instruction Flow

• Challenges:

– Branches: unpredictable

– Branch targets misaligned

– Instruction cache misses

• Solutions

– Prediction and speculation

– High-bandwidth fetch logic

– Nonblocking cache and prefetching

9

Instruction Cache

PC

only3 instructions fetched

Objective: Fetch multiple instructions per cycle

Mikko Lipasti-University of Wisconsin

Disruption of Instruction Flow

10

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Mikko Lipasti-University of Wisconsin

Branch Prediction

• Target address generation  Target Speculation
– Access register:

• PC, General purpose register, Link register

– Perform calculation:
• +/- offset, autoincrement

• Condition resolution  Condition speculation
– Access register:

• Condition code register, General purpose register

– Perform calculation:
• Comparison of data register(s)

11 Mikko Lipasti-University of Wisconsin

Target Address Generation

12

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Mikko Lipasti-University of Wisconsin

Branch Condition Resolution

13

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Mikko Lipasti-University of Wisconsin

Branch Instruction Speculation

14

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)

PC(seq.)Branch
Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Mikko Lipasti-University of Wisconsin

Hardware Smith Predictor

• Jim E. Smith. A Study of Branch Prediction Strategies. International
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, MIPS R10000, etc.

15

Branch Address

Branch Prediction

m

2m k-bit counters

most significant bit

Saturating Counter

Increment/Decrement

Branch Outcome

Updated Counter Value

Mikko Lipasti-University of Wisconsin

Cortex A15: Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend
towards NT, and most entries in PHT1 tend towards T

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor

Mikko Lipasti-University of Wisconsin 16

15% of
A15 Core
Power!

Branch Target Prediction

• Does not work well for function/procedure returns

• Does not work well for virtual functions, switch statements
17

Branch Address

Branch ...target tag target tag target tag

 = = =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target

0 1

Mikko Lipasti-University of Wisconsin

Branch Speculation

• Leading Speculation
– Done during the Fetch stage

– Based on potential branch instruction(s) in the current fetch group

• Trailing Confirmation
– Done during the Branch Execute stage

– Based on the next Branch instruction to finish execution

18

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)

Mikko Lipasti-University of Wisconsin

Branch Speculation

• Start new correct path

– Must remember the alternate (non-predicted) path

• Eliminate incorrect path

– Must ensure that the mis-speculated instructions
produce no side effects

19

NT T NT T NT TNT T

NT T
NT

T

NT T

(TAG 2)

(TAG 3) (TAG 1)

Mikko Lipasti-University of Wisconsin

Mis-speculation Recovery

• Start new correct path

1. Update PC with computed branch target (if predicted
NT)

2. Update PC with sequential instruction address (if
predicted T)

3. Can begin speculation again at next branch

• Eliminate incorrect path

1. Use tag(s) to deallocate resources occupied by
speculative instructions

2. Invalidate all instructions in the decode and dispatch
buffers, as well as those in reservation stations

20 Mikko Lipasti-University of Wisconsin

Parallel Decode

• Primary Tasks

– Identify individual instructions (!)

– Determine instruction types

– Determine dependences between instructions

• Two important factors

– Instruction set architecture

– Pipeline width

21 Mikko Lipasti-University of Wisconsin

Pentium Pro Fetch/Decode

22 Mikko Lipasti-University of Wisconsin

Dependence Checking

• Trailing instructions in fetch group

– Check for dependence on leading instructions

23

Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1

?= ?= ?= ?= ?= ?=

?= ?= ?= ?=

?= ?=

Mikko Lipasti-University of Wisconsin

Summary: Instruction Flow

• Fetch group alignment

• Target address generation
– Branch target buffer

• Branch condition prediction

• Speculative execution

– Tagging/tracking instructions
– Recovering from mispredicted branches

• Decoding in parallel

 24 Mikko Lipasti-University of Wisconsin

High-IPC Processor

Mikko Lipasti-University of Wisconsin 25

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Register Data Flow
• Parallel pipelines

– Centralized instruction fetch

– Centralized instruction decode

• Diversified execution pipelines

– Distributed instruction execution

• Data dependence linking

– Register renaming to resolve true/false
dependences

– Issue logic to support out-of-order issue

– Reorder buffer to maintain precise state
26 Mikko Lipasti-University of Wisconsin

Issue Queues and Execution Lanes

27

Source: theregister.co.uk

ARM Cortex A15

Mikko Lipasti-University of Wisconsin

Program Data Dependences

• True dependence (RAW)
– j cannot execute until i

produces its result

• Anti-dependence (WAR)
– j cannot write its result until i

has read its sources

• Output dependence (WAW)
– j cannot write its result until i

has written its result

28

)()(jRiD

)()(jDiR

)()(jDiD

Mikko Lipasti-University of Wisconsin

Register Data Dependences

• Program data dependences cause hazards
– True dependences (RAW)

– Antidependences (WAR)

– Output dependences (WAW)

• When are registers read and written?
– Out of program order!

– Hence, any and all of these can occur

• Solution to all three: register renaming

29 Mikko Lipasti-University of Wisconsin

Register Renaming: WAR/WAW

• Widely employed (Core i7, Cortex A15, …)

• Resolving WAR/WAW:

– Each register write gets unique “rename register”

– Writes are committed in program order at Writeback

– WAR and WAW are not an issue
• All updates to “architected state” delayed till writeback

• Writeback stage always later than read stage

– Reorder Buffer (ROB) enforces in-order writeback

30

Add R3 <= … P32 <= …

Sub R4 <= … P33 <= …

And R3 <= … P35 <= …
Mikko Lipasti-University of Wisconsin

Register Renaming: RAW

• In order, at dispatch:

– Source registers checked to see if “in flight”

• Register map table keeps track of this

• If not in flight, can be read from the register file

• If in flight, look up “rename register” tag (IOU)

– Then, allocate new register for register write

31

Add R3 <= R2 + R1 P32 <= P2 + P1

Sub R4 <= R3 + R1 P33 <= P32 + P1

And R3 <= R4 & R2 P35 <= P33 + P2

Mikko Lipasti-University of Wisconsin

Register Renaming: RAW

• Advance instruction to instruction queue

– Wait for rename register tag to trigger issue

• Issue queue/reservation station enables out-
of-order issue

– Newer instructions can bypass stalled instructions

32
Source: theregister.co.uk

Mikko Lipasti-University of Wisconsin

High-IPC Processor

Mikko Lipasti-University of Wisconsin 33

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Memory Data Flow

• Resolve WAR/WAW/RAW memory
dependences

– MEM stage can occur out of order

• Provide high bandwidth to memory hierarchy

– Non-blocking caches

34 Mikko Lipasti-University of Wisconsin

Memory Data
Dependences

• WAR/WAW: stores commit in order
– Hazards not possible.

• RAW: loads must check pending stores
– Store queue keeps track of pending stores
– Loads check against these addresses
– Similar to register bypass logic
– Comparators are 64 bits wide
– Must consider position (age) of loads and stores

• Major source of complexity in modern

designs
– Store queue lookup is position-based
– What if store address is not yet known?

35

Store

Queue

Load/Store RS

Agen

Reorder Buffer

Mem

Mikko Lipasti-University of Wisconsin

Increasing Memory Bandwidth

36

Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Expensive
to duplicate

Complex,
concurrent

FSMs

Mikko Lipasti-University of Wisconsin

Maintaining Precise State

• Out-of-order execution

– ALU instructions

– Load/store instructions

• In-order completion/retirement

– Precise exceptions

• Solutions

– Reorder buffer retires instructions in order

– Store queue retires stores in order

– Exceptions can be handled at any instruction
boundary by reconstructing state out of ROB/SQ

37 Mikko Lipasti-University of Wisconsin

ROB

Head

Tail

Summary: A High-IPC Processor

Mikko Lipasti-University of Wisconsin 38

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Memory Hierarchy

Registers

On-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

C
A
P
A
C
IT

Y

S
P
E
E
D

 a
n
d
 C

O
S
T

39 Mikko Lipasti-University of Wisconsin

• Need lots of bandwidth

• Need lots of storage
– 64MB (minimum) to multiple TB

• Must be cheap per bit
– (TB x anything) is a lot of money!

• These requirements seem incompatible

Why Memory Hierarchy?

sec

6.5

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW













40 Mikko Lipasti-University of Wisconsin

Why Memory Hierarchy?

• Fast and small memories
– Enable quick access (fast cycle time)

– Enable lots of bandwidth (1+ L/S/I-fetch/cycle)

• Slower larger memories
– Capture larger share of memory

– Still relatively fast

• Slow huge memories
– Hold rarely-needed state

– Needed for correctness

• All together: provide appearance of large, fast
memory with cost of cheap, slow memory

41 Mikko Lipasti-University of Wisconsin

Why Does a Hierarchy Work?

• Locality of reference
– Temporal locality

• Reference same memory location repeatedly

– Spatial locality
• Reference near neighbors around the same time

• Empirically observed
– Significant!

– Even small local storage (8KB) often satisfies >90%
of references to multi-MB data set

42 Mikko Lipasti-University of Wisconsin

Memory Hierarchy

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels
•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels
•Future references satisfied
quickly

43 Mikko Lipasti-University of Wisconsin

Four Burning Questions

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Built from SRAM, EDRAM, stacked DRAM

44 Mikko Lipasti-University of Wisconsin

Placement

Memory
Type

Placement Comments

Registers Anywhere;
Int, FP, SPR

Compiler/programmer
manages

Cache

(SRAM)

Fixed in H/W Direct-mapped,

set-associative,

fully-associative

DRAM Anywhere O/S manages

Disk Anywhere O/S manages

HUH?

45 Mikko Lipasti-University of Wisconsin

Placement

• Address Range

– Exceeds cache capacity

• Map address to finite capacity

– Called a hash

– Usually just masks high-order bits

• Direct-mapped

– Block can only exist in one location

– Hash collisions cause problems

SRAM Cache

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size

46 Mikko Lipasti-University of Wisconsin

Placement

• Fully-associative
– Block can exist anywhere

– No more hash collisions

• Identification
– How do I know I have the right

block?

– Called a tag check
• Must store address tags

• Compare against address

• Expensive!
– Tag & comparator per block

SRAM Cache

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

47 Mikko Lipasti-University of Wisconsin

Placement

• Set-associative

– Block can be in a
locations

– Hash collisions:
• a still OK

• Identification

– Still perform tag check

– However, only a in
parallel

SRAM Cache

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data Blocks
Index

?=
?=

?=
?=

Tag

48 Mikko Lipasti-University of Wisconsin

Placement and Identification

• Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

• Total size = BS x B = BS x S x (B/S)

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

49 Mikko Lipasti-University of Wisconsin

Replacement

• Cache has finite size

– What do we do when it is full?

• Analogy: desktop full?

– Move books to bookshelf to make room

• Same idea:

– Move blocks to next level of cache

50 Mikko Lipasti-University of Wisconsin

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Several policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used)

– NMRU (not most recently used)

– Pseudo-random (yes, really!)

• Pick victim within set where a = associativity
– If a <= 2, LRU is cheap and easy (1 bit)

– If a > 2, it gets harder

– Pseudo-random works pretty well for caches

51 Mikko Lipasti-University of Wisconsin

Write Policy

• Memory hierarchy

– 2 or more copies of same block

• Main memory and/or disk

• Caches

• What to do on a write?

– Eventually, all copies must be changed

– Write must propagate to all levels

• And other processor’s caches (later)

52 Mikko Lipasti-University of Wisconsin

Write Policy

• Easiest policy: write-through
• Every write propagates directly through hierarchy

– Write in L1, L2, memory, disk (?!?)

• Why is this a bad idea?
– Very high bandwidth requirement

– Remember, large memories are slow

• Popular in real systems only to the L2
– Every write updates L1 and L2

– Beyond L2, use write-back policy

53 Mikko Lipasti-University of Wisconsin

Write Policy

• Most widely used: write-back
• Maintain state of each line in a cache

– Invalid – not present in the cache

– Clean – present, but not written (unmodified)

– Dirty – present and written (modified)

• Store state in tag array, next to address tag
– Mark dirty bit on a write

• On eviction, check dirty bit
– If set, write back dirty line to next level

– Called a writeback or castout

54 Mikko Lipasti-University of Wisconsin

Write Policy

• Complications of write-back policy
– Stale copies lower in the hierarchy

– Must always check higher level for dirty copies before
accessing copy in a lower level

• Not a big problem in uniprocessors
– In multiprocessors: the cache coherence problem

• I/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors
– Called coherent I/O

– Must check caches for dirty copies before reading main
memory

55 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

0

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Tag Array

56 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Tag Array

57 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

0

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Tag Array

58 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

0

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Tag Array

59 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

10 1

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Tag Array

60 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

10 11 0

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Tag Array

61 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

01 11 1

0

10 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Tag Array

62 Mikko Lipasti-University of Wisconsin

Cache Example

Tag0 Tag1 LRU

01 11 1

0

10 d 1

11 1

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:
Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Store 0x29 101001 2/0 Hit/Dirty

Tag Array

63 Mikko Lipasti-University of Wisconsin

Cache Misses and Performance

• Miss penalty
– Detect miss: 1 or more cycles

– Find victim (replace block): 1 or more cycles
• Write back if dirty

– Request block from next level: several cycles
• May need to find line from one of many caches (coherence)

– Transfer block from next level: several cycles
• (block size) / (bus width)

– Fill block into data array, update tag array: 1+ cycles

– Resume execution

• In practice: 6 cycles to 100s of cycles

64 Mikko Lipasti-University of Wisconsin

Cache Miss Rate

• Determined by:

– Program characteristics

• Temporal locality

• Spatial locality

– Cache organization

• Block size, associativity, number of sets

65 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s [Hill]
• Compulsory miss

– First-ever reference to a given block of memory

– Cold misses = mc : number of misses for FA infinite cache

• Capacity

– Working set exceeds cache capacity

– Useful blocks (with future references) displaced

– Capacity misses = mf - mc : add’l misses for finite FA cache

• Conflict

– Placement restrictions (not fully-associative) cause useful
blocks to be displaced

– Think of as capacity within set

– Conflict misses = ma - mf : add’l misses in actual cache
66 Mikko Lipasti-University of Wisconsin

Cache Miss Rate Effects

• Number of blocks (sets x associativity)
– Bigger is better: fewer conflicts, greater capacity

• Associativity
– Higher associativity reduces conflicts

– Very little benefit beyond 8-way set-associative

• Block size
– Larger blocks exploit spatial locality

– Usually: miss rates improve until 64B-256B

– 512B or more miss rates get worse
• Larger blocks less efficient: more capacity misses

• Fewer placement choices: more conflict misses

67 Mikko Lipasti-University of Wisconsin

Cache Miss Rate

• Subtle tradeoffs between cache organization
parameters
– Large blocks reduce compulsory misses but increase

miss penalty
• #compulsory ~= (working set) / (block size)
• #transfers = (block size)/(bus width)

– Large blocks increase conflict misses
• #blocks = (cache size) / (block size)

– Associativity reduces conflict misses
– Associativity increases access time

• Can associative cache ever have higher miss rate
than direct-mapped cache of same size?

68 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s

• Vary size and associativity
– Compulsory misses are constant
– Capacity and conflict misses are reduced

0

1

2

3

4

5

6

7

8

9

8K1W 8K4W 16K1W 16K4W

M
is

s
p

er
 In

st
ru

ct
io

n
 (%

)

Conflict

Capacity

Compulsory

69 Mikko Lipasti-University of Wisconsin

Cache Miss Rates: 3 C’s

• Vary size and block size
– Compulsory misses drop with increased block size
– Capacity and conflict can increase with larger blocks

0

1

2

3

4

5

6

7

8

8K32B

8K64B

16K32B

16K64B

M
is

s
p

er
 In

st
ru

ct
io

n
 (%

)

Conflict

Capacity

Compulsory

70 Mikko Lipasti-University of Wisconsin

Multilevel Caches

• Ubiquitous in high-performance processors

– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip

• Inclusion in multilevel caches

– Multi-level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write-through and write-back

71 Mikko Lipasti-University of Wisconsin

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion

– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not

– Inclusion not maintained

• Different block sizes also complicate inclusion

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

72 Mikko Lipasti-University of Wisconsin

Multilevel Inclusion

• Inclusion takes effort to maintain

– Make L2 cache have bits or pointers giving L1 contents

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block

– L2 blocksize/L1 blocksize

• Supplemental reading: [Wang, Baer, Levy ISCA 1989]

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

73 Mikko Lipasti-University of Wisconsin

Multilevel Miss Rates

• Miss rates of lower level caches

– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:

– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

74 Mikko Lipasti-University of Wisconsin

Mikko Lipasti-University of Wisconsin 75

Cache Design: Four Key Issues

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Usually SRAM

• Also apply to main memory, disks

Mikko Lipasti-University of Wisconsin 76

Replacement

• Cache has finite size

– What do we do when it is full?

• Analogy: desktop full?

– Move books to bookshelf to make room

– Bookshelf full? Move least-used to library

– Etc.

• Same idea:

– Move blocks to next level of cache

Mikko Lipasti-University of Wisconsin 77

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Many policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used), pseudo-LRU

– LFU (least frequently used)

– NMRU (not most recently used)

– NRU

– Pseudo-random (yes, really!)

– Optimal

– Etc

Mikko Lipasti-University of Wisconsin 78

Optimal Replacement Policy?
[Belady, IBM Systems Journal, 1966]

• Evict block with longest reuse distance
– i.e. next reference to block is farthest in future
– Requires knowledge of the future!

• Can’t build it, but can model it with trace
– Process trace in reverse
– [Sugumar&Abraham] describe how to do this in

one pass over the trace with some lookahead
(Cheetah simulator)

• Useful, since it reveals opportunity
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss

Least-Recently Used

• For a=2, LRU is equivalent to NMRU

– Single bit per set indicates LRU/MRU

– Set/clear on each access

• For a>2, LRU is difficult/expensive

– Timestamps? How many bits?

• Must find min timestamp on each eviction

– Sorted list? Re-sort on every access?

• List overhead: log2(a) bits /block

– Shift register implementation
Mikko Lipasti-University of Wisconsin 79

True LRU Shortcomings
• Streaming data/scans: x0, x1, …, xn

– Effectively no temporal reuse

• Thrashing: reuse distance > a

– Temporal reuse exists but LRU fails

• All blocks march from MRU to LRU

– Other conflicting blocks are pushed out

• For n>a no blocks remain after scan/thrash

– Incur many conflict misses after scan ends

• Pseudo-LRU sometimes helps a little bit
80 Mikko Lipasti-University of Wisconsin

Segmented or Protected LRU
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994]

[Cache: Wilkerson, Wade, US Patent 6393525, 1999]

• Partition LRU list into filter and reuse lists

• On insert, block goes into filter list

• On reuse (hit), block promoted into reuse list

• Provides scan & some thrash resistance

– Blocks without reuse get evicted quickly

– Blocks with reuse are protected from scan/thrash
blocks

• No storage overhead, but LRU update slightly
more complicated

81 Mikko Lipasti-University of Wisconsin

Protected LRU: LIP
• Simplified variant of this idea: LIP

– Qureshi et al. ISCA 2007

• Insert new blocks into LRU position, not
MRU position

– Filter list of size 1, reuse list of size (a-1)

• Do this adaptively: DIP

• Use set dueling to decide LIP vs. LRU

– 1 (or a few) set uses LIP vs. 1 that uses LRU

– Compare hit rate for sets

– Set policy for all other sets to match best set
82 Mikko Lipasti-University of Wisconsin

Not Recently Used (NRU)
• Keep NRU state in 1 bit/block

– Bit is set to 0 when installed (assume reuse)

– Bit is set to 0 when referenced (reuse observed)

– Evictions favor NRU=1 blocks

– If all blocks are NRU=0

• Eviction forces all blocks in set to NRU=1

• Picks one as victim (can be pseudo-random, or rotating, or fixed left-
to-right)

• Simple, similar to virtual memory clock algorithm

• Provides some scan and thrash resistance
– Relies on “randomizing” evictions rather than strict LRU order

• Used by Intel Itanium, Sparc T2

Mikko Lipasti-University of Wisconsin 83

Least Frequently Used

• Counter per block, incremented on reference

• Evictions choose lowest count

– Logic not trivial (a2 comparison/sort)

• Storage overhead

– 1 bit per block: same as NRU

– How many bits are helpful?

Mikko Lipasti-University of Wisconsin 84

Mikko Lipasti-University of Wisconsin 85

Pitfall: Cache Filtering Effect

 Upper level caches (L1, L2) hide reference
stream from lower level caches

 Blocks with “no reuse” @ LLC could be very hot
(never evicted from L1/L2)

 Evicting from LLC often causes L1/L2 eviction
(due to inclusion)

 Could hurt performance even if LLC miss rate
improves

86

Replacement Policy Summary
 Replacement policies affect capacity and conflict

misses

 Policies covered:

 Belady’s optimal replacement

 Least-recently used (LRU)

 Practical pseudo-LRU (tree LRU)

 Protected LRU

 LIP/DIP variant

 Set dueling to dynamically select policy

 Not-recently-used (NRU) or clock algorithm

 Least frequently used (LFU)
Mikko Lipasti-University of Wisconsin

Main Memory

• DRAM chips

• Memory organization

– Interleaving

–Banking

• Memory controller design

DRAM Chip Organization

• Optimized for density, not speed

• Data stored as charge in capacitor

• Discharge on reads => destructive reads

• Charge leaks over time

– refresh every 64ms

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Cycle time roughly twice
access time

 Need to precharge bitlines
before access

88

DRAM Chip Organization

• Current generation DRAM

– 8Gbit @25nm

– 266 MHz synchronous interface

– Data clock 4x (1066MHz), double-data
rate so 2133 MT/s

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Address pins are time-multiplexed

– Row address strobe (RAS)

– Column address strobe (CAS)

89

DRAM Chip Organization

• New RAS results in:

– Bitline precharge

– Row decode, sense

– Row buffer write (up to 8K)

 New CAS

– Read from row buffer

– Much faster (3x)

 Streaming row accesses desirable

90

Sense Amps

Row Buffer

Column Decoder

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
Cell

Row
Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

Memory Controller Organization

ReadQ WriteQ RespQ

Scheduler Buffer

DIMM(s) DIMM(s)

Bank0 Bank1

Commands Data Commands Data

Memory
Controller

Memory Controller Organization

• ReadQ

– Buffers multiple reads, enables scheduling optimizations

• WriteQ

– Buffers writes, allows reads to bypass writes, enables scheduling opt.

• RespQ

– Buffers responses until bus available

• Scheduler

– FIFO? Or schedule to maximize for row hits (CAS accesses)

– Scan queues for references to same page

– Looks similar to issue queue with page number broadcasts for tag match

• Buffer

– Builds transfer packet from multiple memory words to send over
processor bus

Lecture Summary

• Brief review: High-IPC, out-of-order processors

– Instruction flow

– Register Dataflow

– Memory Dataflow

• Caches and Memory Hierarchy

• Main memory (DRAM)

Mikko Lipasti-University of Wisconsin 93

