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High-IPC Processor Evolution 
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Desktop/Workstation Market 

Scalar RISC 
Pipeline 

1980s:  
  MIPS 
  SPARC 
  Intel 486 

2-4 Issue  
In-order 

Early 1990s:  
  IBM RIOS-I 
  Intel Pentium 
   

Limited Out-
of-Order 

Mid 1990s: 
  PowerPC 604 
  Intel P6 
   

Large ROB 
Out-of-Order 

2000s: 
  DEC Alpha 21264 
  IBM Power4/5 
  AMD K8 

1985 – 2005: 20 years, 100x frequency 

Mobile Market 

Scalar RISC 
Pipeline 

2002:  ARM11 

2-4 Issue  
In-order 

2005: Cortex A8 

Limited Out-
of-Order 

2009: Cortex A9   

Large ROB 
Out-of-Order 

2011: Cortex A15 

2002 – 2011: 10 years, 10x frequency 



A Typical High-IPC Processor 
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Power Consumption 

• Actual computation overwhelmed by 
overhead of aggressive execution pipeline 
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ARM Cortex A15 [Source: NVIDIA] Core i7 [Source: Intel] 



Mobile CPUs: What Next? 

ARM ISA compatibility … 
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Processor Performance  =   --------------- 
Time 

 Program 

Architecture --> Implementation --> Realization 

 Compiler Designer      Processor Designer         Chip Designer 

Instructions    Cycles 

 Program Instruction 
Time 
Cycle 

 (code size) 

= X X 

 (CPI)  (cycle time) 

NVIDIA 
Project 

Denver? 

Frequency: maxed out due to power 

ILP bag of tricks from desktop CPUs: empty 

 



ILP is our only option 

• Attack and reduce overheads one by one 

• Free up power budget for actual computation 
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ARM Cortex A15 [Source: NVIDIA] 



Lecture Summary 

• Motivation 

• Brief review: High-IPC, out-of-order processors 

– Instruction flow 

– Register Dataflow 

– Memory Dataflow 

• Caches and Memory Hierarchy 
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High-IPC Processor 
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Instruction Flow 

• Challenges: 

– Branches: unpredictable 

– Branch targets misaligned 

– Instruction cache misses 

• Solutions 

– Prediction and speculation 

– High-bandwidth fetch logic 

– Nonblocking cache and prefetching 

9 

Instruction Cache 

PC 

only3 instructions fetched 

Objective: Fetch multiple instructions per cycle 
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Disruption of Instruction Flow 
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Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode
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Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch
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Branch Prediction 

• Target address generation  Target Speculation 
– Access register:  

• PC, General purpose register, Link register 

– Perform calculation:  
• +/- offset, autoincrement 

• Condition resolution  Condition speculation 
– Access register: 

• Condition code register, General purpose register 

– Perform calculation: 
• Comparison of data register(s) 
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Target Address Generation 

12 

Decode Buffer
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Branch Condition Resolution 
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Branch Instruction Speculation 
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Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)

PC(seq.)Branch
Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

  FA-mux
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Hardware Smith Predictor 

• Jim E. Smith.  A Study of Branch Prediction Strategies.  International 
Symposium on Computer Architecture, pages 135-148, May 1981 

• Widely employed: Intel Pentium, PowerPC 604, MIPS R10000, etc. 
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Branch Address

Branch Prediction

m

2m k-bit  counters

most significant bit

Saturating Counter

Increment/Decrement

Branch Outcome

Updated Counter Value
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Cortex A15: Bi-Mode Predictor 

• PHT partitioned into T/NT halves 
– Selector chooses source 

• Reduces negative interference, since most entries in PHT0 tend 
towards NT, and most entries in PHT1 tend towards T 

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor
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15% of 
A15 Core 
Power! 



Branch Target Prediction 

• Does not work well for function/procedure returns 

• Does not work well for virtual functions, switch statements 
17 

Branch Address

Branch ...target tag target tag target tag

  =   =   =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target

0 1
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Branch Speculation 

• Leading Speculation 
– Done during the Fetch stage 

– Based on potential branch instruction(s) in the current fetch group 

• Trailing Confirmation 
– Done during the Branch Execute stage 

– Based on the next Branch instruction to finish execution 
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NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)
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Branch Speculation 

• Start new correct path 

– Must remember the alternate (non-predicted) path 

• Eliminate incorrect path 

– Must ensure that the mis-speculated instructions 
produce no side effects 
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NT T NT T NT TNT T

NT T
NT

T

NT T

(TAG 2)

(TAG 3) (TAG 1)
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Mis-speculation Recovery 

• Start new correct path 

1. Update PC with computed branch target (if predicted 
NT) 

2. Update PC with sequential instruction address (if 
predicted T) 

3. Can begin speculation again at next branch 

• Eliminate incorrect path 

1. Use tag(s) to deallocate resources occupied by 
speculative instructions 

2. Invalidate all instructions in the decode and dispatch 
buffers, as well as those in reservation stations 
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Parallel Decode 

• Primary Tasks 

– Identify individual instructions (!) 

– Determine instruction types 

– Determine dependences between instructions 

• Two important factors 

– Instruction set architecture 

– Pipeline width 
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Pentium Pro Fetch/Decode 
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Dependence Checking 

• Trailing instructions in fetch group 

– Check for dependence on leading instructions 
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Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 

?= ?= ?= ?= ?= ?= 

?= ?= ?= ?= 

?= ?= 
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Summary: Instruction Flow 

• Fetch group alignment 
 

• Target address generation 
– Branch target buffer 

 
• Branch condition prediction 

 
• Speculative execution 

– Tagging/tracking instructions 
– Recovering from mispredicted branches 

 
• Decoding in parallel 
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High-IPC Processor 
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Register Data Flow 
• Parallel pipelines 

– Centralized instruction fetch 

– Centralized instruction decode 

• Diversified execution pipelines 

– Distributed instruction execution 

• Data dependence linking 

– Register renaming to resolve true/false 
dependences 

– Issue logic to support out-of-order issue 

– Reorder buffer to maintain precise state 
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Issue Queues and Execution Lanes 
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Source: theregister.co.uk 

ARM Cortex A15 
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Program Data Dependences 

• True dependence (RAW) 
– j cannot execute until i 

produces its result 

• Anti-dependence (WAR) 
– j cannot write its result until i 

has read its sources 

• Output dependence (WAW) 
– j cannot write its result until i 

has written its result 
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 )()( jRiD

 )()( jDiR

 )()( jDiD
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Register Data Dependences 

• Program data dependences cause hazards 
– True dependences (RAW) 

– Antidependences (WAR) 

– Output dependences (WAW) 

• When are registers read and written? 
– Out of program order! 

– Hence, any and all of these can occur 

 
• Solution to all three: register renaming 
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Register Renaming: WAR/WAW 

• Widely employed (Core i7, Cortex A15, …) 

• Resolving WAR/WAW: 

– Each register write gets unique “rename register” 

– Writes are committed in program order at Writeback 

– WAR and WAW are not an issue 
• All updates to “architected state” delayed till writeback 

• Writeback stage always later than read stage 

– Reorder Buffer (ROB) enforces in-order writeback 

30 

Add R3 <= …  P32 <= … 

Sub R4 <= …  P33 <= … 

And R3 <= …  P35 <= … 
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Register Renaming: RAW 

• In order, at dispatch: 

– Source registers checked to see if “in flight” 

• Register map table keeps track of this 

• If not in flight, can be read from the register file 

• If in flight, look up “rename register” tag (IOU) 

– Then, allocate new register for register write 

31 

Add R3 <= R2 + R1 P32 <= P2 + P1 

Sub R4 <= R3 + R1 P33 <= P32 + P1 

And R3 <= R4 & R2 P35 <= P33 + P2 
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Register Renaming: RAW 

• Advance instruction to instruction queue 

– Wait for rename register tag to trigger issue 

• Issue queue/reservation station enables out-
of-order issue 

– Newer instructions can bypass stalled instructions 

32 
Source: theregister.co.uk 
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High-IPC Processor 
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Memory Data Flow 

• Resolve WAR/WAW/RAW memory 
dependences 

– MEM stage can occur out of order 

• Provide high bandwidth to memory hierarchy 

– Non-blocking caches 
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Memory Data 
Dependences 

• WAR/WAW: stores commit in order 
– Hazards not possible.  

• RAW: loads must check pending stores 
– Store queue keeps track of pending stores 
– Loads check against these addresses 
– Similar to register bypass logic 
– Comparators are 64 bits wide 
– Must consider position (age) of loads and stores 

 
• Major source of complexity in modern 

designs 
– Store queue lookup is position-based 
– What if store address is not yet known? 

35 
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Increasing Memory Bandwidth 
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Maintaining Precise State 

• Out-of-order execution 

– ALU instructions 

– Load/store instructions 

• In-order completion/retirement 

– Precise exceptions 

• Solutions 

– Reorder buffer retires instructions in order 

– Store queue retires stores in order 

– Exceptions can be handled at any instruction 
boundary by reconstructing state out of ROB/SQ 
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Head 

Tail 



Summary: A High-IPC Processor 
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Memory Hierarchy 

Registers 

On-Chip 
SRAM 

Off-Chip 
SRAM 

DRAM 

Disk 

C
A
P
A
C
IT

Y
 

S
P
E
E
D

 a
n
d
 C

O
S
T
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• Need lots of bandwidth 
 
 
 
 

• Need lots of storage 
– 64MB (minimum) to multiple TB 

• Must be cheap per bit 
– (TB x anything) is a lot of money! 

• These requirements seem incompatible 

Why Memory Hierarchy? 

sec

6.5

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW












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Why Memory Hierarchy? 

• Fast and small memories 
– Enable quick access (fast cycle time) 

– Enable lots of bandwidth (1+ L/S/I-fetch/cycle) 

• Slower larger memories 
– Capture larger share of memory 

– Still relatively fast 

• Slow huge memories 
– Hold rarely-needed state 

– Needed for correctness 

• All together: provide appearance of large, fast 
memory with cost of cheap, slow memory 
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Why Does a Hierarchy Work? 

• Locality of reference 
– Temporal locality 

• Reference same memory location repeatedly 

– Spatial locality 
• Reference near neighbors around the same time 

• Empirically observed 
– Significant! 

– Even small local storage (8KB) often satisfies >90% 
of references to multi-MB data set 
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Memory Hierarchy 

CPU 

I & D L1 Cache 

Shared L2 Cache 

Main Memory 

Disk 

Temporal Locality 
•Keep recently referenced 
items at higher levels 
•Future references satisfied 
quickly 

Spatial Locality 
•Bring neighbors of recently 
referenced to higher levels 
•Future references satisfied 
quickly 
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Four Burning Questions 

• These are: 
– Placement 

• Where can a block of memory go? 

– Identification 
• How do I find a block of memory? 

– Replacement 
• How do I make space for new blocks? 

– Write Policy 
• How do I propagate changes? 

• Consider these for caches 
– Built from SRAM, EDRAM, stacked DRAM 
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Placement 

Memory 
Type 

Placement Comments 

Registers Anywhere; 
Int, FP, SPR 

Compiler/programmer 
manages 

Cache  

(SRAM) 

Fixed in H/W Direct-mapped, 

set-associative,  

fully-associative 

DRAM Anywhere O/S manages 

Disk Anywhere O/S manages 

HUH? 
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Placement 

• Address Range 

– Exceeds cache capacity 

• Map address to finite capacity 

– Called a hash 

– Usually just masks high-order bits 

• Direct-mapped 

– Block can only exist in one location 

– Hash collisions cause problems 

SRAM Cache 

Hash 

Address 

Index 

Data Out 

Index Offset 

32-bit Address 

Offset 

Block Size 
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Placement 

• Fully-associative 
– Block can exist anywhere 

– No more hash collisions 

• Identification 
– How do I know I have the right 

block? 

– Called a tag check 
• Must store address tags 

• Compare against address 

• Expensive! 
– Tag & comparator per block 

SRAM Cache 

Hash 

Address 

Data Out 

Offset 

32-bit Address 

Offset 

Tag 

Hit 
Tag Check 

?= 

Tag 
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Placement 

• Set-associative 

– Block can be in a 
locations 

– Hash collisions:  
• a still OK 

• Identification 

– Still perform tag check 

– However, only a in 
parallel 

SRAM Cache 

Hash 

Address 

Data Out 

Offset 

Index 

Offset 

32-bit Address 

Tag Index 

a Tags a Data Blocks 
Index 

?= 
?= 

?= 
?= 

Tag 
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Placement and Identification 

• Consider: <BS=block size, S=sets, B=blocks> 
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B) 

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4) 

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1) 

• Total size = BS x B = BS x S x (B/S) 

Offset 

32-bit Address 

Tag Index 

Portion Length Purpose 

Offset o=log2(block size) Select word within block 

Index i=log2(number of sets) Select set of blocks 

Tag t=32 - o - i ID block within set 
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Replacement 

• Cache has finite size 

– What do we do when it is full? 

• Analogy: desktop full? 

– Move books to bookshelf to make room 

• Same idea: 

– Move blocks to next level of cache 
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Replacement 

• How do we choose victim? 
– Verbs: Victimize, evict, replace, cast out 

• Several policies are possible 
– FIFO (first-in-first-out) 

– LRU (least recently used) 

– NMRU (not most recently used) 

– Pseudo-random (yes, really!) 

• Pick victim within set where a = associativity 
– If a <= 2, LRU is cheap and easy (1 bit) 

– If a > 2, it gets harder 

– Pseudo-random works pretty well for caches 
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Write Policy 

• Memory hierarchy 

– 2 or more copies of same block 

• Main memory and/or disk 

• Caches 

• What to do on a write? 

– Eventually, all copies must be changed 

– Write must propagate to all levels 

• And other processor’s caches (later) 
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Write Policy 

• Easiest policy: write-through 
• Every write propagates directly through hierarchy 

– Write in L1, L2, memory, disk (?!?) 

• Why is this a bad idea? 
– Very high bandwidth requirement 

– Remember, large memories are slow 

• Popular in real systems only to the L2 
– Every write updates L1 and L2 

– Beyond L2, use write-back policy 
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Write Policy 

• Most widely used: write-back 
• Maintain state of each line in a cache 

– Invalid – not present in the cache 

– Clean – present, but not written (unmodified) 

– Dirty – present and written (modified) 

• Store state in tag array, next to address tag 
– Mark dirty bit on a write 

• On eviction, check dirty bit 
– If set, write back dirty line to next level 

– Called a writeback or castout 
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Write Policy 

• Complications of write-back policy 
– Stale copies lower in the hierarchy 

– Must always check higher level for dirty copies before 
accessing copy in a lower level 

• Not a big problem in uniprocessors 
– In multiprocessors: the cache coherence problem 

• I/O devices that use DMA (direct memory access) 
can cause problems even in uniprocessors 
– Called coherent I/O 

– Must check caches for dirty copies before reading main 
memory 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

0 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Tag Array 

57 Mikko Lipasti-University of Wisconsin 



Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

0 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

10 1 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

10 11 0 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

01 11 1 

0 

10 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Tag Array 
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Cache Example 

Tag0 Tag1 LRU 

01 11 1 

0 

10 d 1 

11 1 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 
Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Store 0x29 101001 2/0 Hit/Dirty 

Tag Array 
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Cache Misses and Performance 

• Miss penalty 
– Detect miss: 1 or more cycles 

– Find victim (replace block): 1 or more cycles 
• Write back if dirty 

– Request block from next level: several cycles 
• May need to find line from one of many caches (coherence) 

– Transfer block from next level: several cycles 
• (block size) / (bus width) 

– Fill block into data array, update tag array: 1+ cycles 

– Resume execution 

• In practice: 6 cycles to 100s of cycles 
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Cache Miss Rate 

• Determined by: 

– Program characteristics 

• Temporal locality 

• Spatial locality 

– Cache organization 

• Block size, associativity, number of sets 
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Cache Miss Rates: 3 C’s [Hill] 
• Compulsory miss 

– First-ever reference to a given block of memory 

– Cold misses = mc : number of misses for FA infinite cache 

• Capacity 

– Working set exceeds cache capacity 

– Useful blocks (with future references) displaced 

– Capacity misses = mf - mc : add’l misses for finite FA cache 

• Conflict 

– Placement restrictions (not fully-associative) cause useful 
blocks to be displaced 

– Think of as capacity within set 

– Conflict misses = ma - mf : add’l misses in actual cache 
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Cache Miss Rate Effects 

• Number of blocks (sets x associativity) 
– Bigger is better: fewer conflicts, greater capacity 

• Associativity 
– Higher associativity reduces conflicts 

– Very little benefit beyond 8-way set-associative 

• Block size 
– Larger blocks exploit spatial locality 

– Usually: miss rates improve until 64B-256B 

– 512B or more miss rates get worse 
• Larger blocks less efficient: more capacity misses 

• Fewer placement choices: more conflict misses 

67 Mikko Lipasti-University of Wisconsin 



Cache Miss Rate 

• Subtle tradeoffs between cache organization 
parameters 
– Large blocks reduce compulsory misses but increase 

miss penalty 
• #compulsory ~= (working set) / (block size) 
• #transfers = (block size)/(bus width) 

– Large blocks increase conflict misses 
• #blocks = (cache size) / (block size) 

– Associativity reduces conflict misses 
– Associativity increases access time 

• Can associative cache ever have higher miss rate 
than direct-mapped cache of same size? 

68 Mikko Lipasti-University of Wisconsin 



Cache Miss Rates: 3 C’s 

• Vary size and associativity 
– Compulsory misses are constant 
– Capacity and conflict misses are reduced 
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Cache Miss Rates: 3 C’s 

• Vary size and block size 
– Compulsory misses drop with increased block size 
– Capacity and conflict can increase with larger blocks 
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Multilevel Caches 

• Ubiquitous in high-performance processors 

– Gap between L1 (core frequency) and main memory too high 

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip 

• Inclusion in multilevel caches 

– Multi-level inclusion holds if L2 cache is superset of L1 

– Can handle virtual address synonyms 

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop 

– Makes L1 writes simpler 

• For both write-through and write-back 
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Multilevel Inclusion 

• Example: local LRU not sufficient to guarantee 
inclusion 

– Assume L1 holds two and L2 holds three blocks 

– Both use local LRU 

• Final state: L1 contains 1, L2 does not 

– Inclusion not maintained 

• Different block sizes also complicate inclusion 
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Multilevel Inclusion 

• Inclusion takes effort to maintain 

– Make L2 cache have bits or pointers giving L1 contents 

– Invalidate from L1 before replacing from L2 

– In example, removing 1 from L2 also removes it from L1 

• Number of pointers per L2 block 

– L2 blocksize/L1 blocksize 

• Supplemental reading: [Wang, Baer, Levy ISCA 1989] 
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Multilevel Miss Rates 

• Miss rates of lower level caches 

– Affected by upper level filtering effect 

– LRU becomes LRM, since “use” is “miss” 

– Can affect miss rates, though usually not important 

• Miss rates reported as: 

– Miss per instruction 

– Global miss rate 

– Local miss rate 

– “Solo” miss rate 

• L2 cache sees all references (unfiltered by L1) 
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Cache Design: Four Key Issues 

• These are: 
– Placement 

• Where can a block of memory go? 

– Identification 
• How do I find a block of memory? 

– Replacement 
• How do I make space for new blocks? 

– Write Policy 
• How do I propagate changes? 

• Consider these for caches 
– Usually SRAM 

• Also apply to main memory, disks 
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Replacement 

• Cache has finite size 

– What do we do when it is full? 

• Analogy: desktop full? 

– Move books to bookshelf to make room 

– Bookshelf full? Move least-used to library 

– Etc. 

• Same idea: 

– Move blocks to next level of cache 
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Replacement 

• How do we choose victim? 
– Verbs: Victimize, evict, replace, cast out 

• Many policies are possible 
– FIFO (first-in-first-out) 

– LRU (least recently used), pseudo-LRU 

– LFU (least frequently used) 

– NMRU (not most recently used) 

– NRU 

– Pseudo-random (yes, really!) 

– Optimal 

– Etc 
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Optimal Replacement Policy? 
[Belady, IBM Systems Journal, 1966] 

• Evict block with longest reuse distance 
– i.e. next reference to block is farthest in future 
– Requires knowledge of the future! 

• Can’t build it, but can model it with trace 
– Process trace in reverse 
– [Sugumar&Abraham] describe how to do this in 

one pass over the trace with some lookahead 
(Cheetah simulator) 

• Useful, since it reveals opportunity 
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss 



Least-Recently Used 

• For a=2, LRU is equivalent to NMRU 

– Single bit per set indicates LRU/MRU 

– Set/clear on each access 

• For a>2, LRU is difficult/expensive 

– Timestamps? How many bits? 

• Must find min timestamp on each eviction 

– Sorted list? Re-sort on every access? 

• List overhead: log2(a) bits /block 

– Shift register implementation 
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True LRU Shortcomings 
• Streaming data/scans: x0, x1, …, xn 

– Effectively no temporal reuse 

• Thrashing: reuse distance > a 

– Temporal reuse exists but LRU fails 

• All blocks march from MRU to LRU 

– Other conflicting blocks are pushed out 

• For n>a no blocks remain after scan/thrash 

– Incur many conflict misses after scan ends 

• Pseudo-LRU sometimes helps a little bit 
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Segmented or Protected LRU 
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994] 

[Cache: Wilkerson, Wade, US Patent 6393525, 1999] 

• Partition LRU list into filter and reuse lists 

• On insert, block goes into filter list 

• On reuse (hit), block promoted into reuse list 

• Provides scan & some thrash resistance 

– Blocks without reuse get evicted quickly 

– Blocks with reuse are protected from scan/thrash 
blocks 

• No storage overhead, but LRU update slightly 
more complicated 
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Protected LRU: LIP 
• Simplified variant of this idea: LIP 

– Qureshi et al. ISCA 2007 

• Insert new blocks into LRU position, not 
MRU position 

– Filter list of size 1, reuse list of size (a-1) 

• Do this adaptively: DIP 

• Use set dueling to decide LIP vs. LRU 

– 1 (or a few) set uses LIP vs. 1 that uses LRU 

– Compare hit rate for sets 

– Set policy for all other sets to match best set 
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Not Recently Used (NRU) 
• Keep NRU state in 1 bit/block 

– Bit is set to 0 when installed (assume reuse) 

– Bit is set to 0 when referenced (reuse observed) 

– Evictions favor NRU=1 blocks 

– If all blocks are NRU=0 

• Eviction forces all blocks in set to NRU=1 

• Picks one as victim (can be pseudo-random, or rotating, or fixed left-
to-right) 

• Simple, similar to virtual memory clock algorithm 

• Provides some scan and thrash resistance 
– Relies on “randomizing”  evictions rather than strict LRU order 

• Used by Intel Itanium, Sparc T2 
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Least Frequently Used 

• Counter per block, incremented on reference 

• Evictions choose lowest count 

– Logic not trivial (a2 comparison/sort) 

• Storage overhead 

– 1 bit per block: same as NRU 

– How many bits are helpful? 
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Pitfall: Cache Filtering Effect 

 Upper level caches (L1, L2) hide reference 
stream from lower level caches 

 Blocks with “no reuse”  @ LLC could be very hot 
(never evicted from L1/L2) 

 Evicting from LLC often causes L1/L2 eviction 
(due to inclusion) 

 Could hurt performance even if LLC miss rate 
improves 
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Replacement Policy Summary 
 Replacement policies affect capacity and conflict 

misses 

 Policies covered: 

 Belady’s optimal replacement 

 Least-recently used (LRU) 

 Practical pseudo-LRU (tree LRU) 

 Protected LRU 

 LIP/DIP variant 

 Set dueling to dynamically select policy 

 Not-recently-used (NRU) or clock algorithm 

 Least frequently used (LFU) 
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Main Memory 

• DRAM chips 

• Memory organization 

– Interleaving 

–Banking 

• Memory controller design 



DRAM Chip Organization 

• Optimized for density, not speed 

• Data stored as charge in capacitor 

• Discharge on reads => destructive reads 

• Charge leaks over time 

– refresh every 64ms 
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 Cycle time roughly twice 
access time 

 Need to precharge bitlines 
before access 
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DRAM Chip Organization 

• Current generation DRAM 

– 8Gbit @25nm  

– 266 MHz synchronous interface 

– Data clock 4x (1066MHz), double-data 
rate so 2133 MT/s 
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 Address pins are time-multiplexed 

– Row address strobe (RAS) 

– Column address strobe (CAS) 
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DRAM Chip Organization 

• New RAS results in: 

– Bitline precharge 

– Row decode, sense 

– Row buffer write (up to 8K) 

 New CAS 

– Read from row buffer 

– Much faster (3x) 

 Streaming row accesses desirable 
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Memory Controller Organization 

ReadQ WriteQ RespQ 

Scheduler Buffer 

DIMM(s) DIMM(s) 

Bank0 Bank1 

Commands Data Commands Data 

Memory 
Controller 



Memory Controller Organization 

• ReadQ 

– Buffers multiple reads, enables scheduling optimizations 

• WriteQ 

– Buffers writes, allows reads to bypass writes, enables scheduling opt. 

• RespQ 

– Buffers responses until bus available 

• Scheduler 

– FIFO? Or schedule to maximize for row hits (CAS accesses) 

– Scan queues for references to same page 

– Looks similar to issue queue with page number broadcasts for tag match 

• Buffer 

– Builds transfer packet from multiple memory words to send over 
processor bus 



Lecture Summary 

• Brief review: High-IPC, out-of-order processors 

– Instruction flow 

– Register Dataflow 

– Memory Dataflow 

• Caches and Memory Hierarchy 

• Main memory (DRAM) 
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